A review on regulatory control of chromium stress in plants
Article Main
Abstract
Chromium (Cr) is a non-biodegradable heavy metal that persists long in aquatic and terrestrial ecosystems and enters the food chain. It is cytotoxic even at low concentrations and reduces the yield of plants. Plants also have cellular mechanisms to manage the accumulation of metal ions inside the cell to diminish the possible injury from non-essential metal ions. This paper reviews current information on plant response to Cr, a key environmental pollutant. The harmful effects together with absorption, transfer, and aggregation of Cr are discussed. The roles of the cell wall, plasma membrane, and plant microbes as the primary hindrances for Cr ingression into the cell, along with sequestration and compartmentalization process, have also been discussed. Cr-generated oxidative injury is also regarded as the main deliberated effect of Cr toxicity. It interferes with NADPH oxidases (plasma membrane) and the electron transport chains, which develop electron leakage. Some genes related to Cr stress in plants get expressed, and suppression produces protective effects by activating the signal transduction pathways. The expression of genes like BnaCnng69940D and BnaC08g49360D is increased, which is involved in protein kinase activity, signal transduction, and oxidoreductase activity. The increased mRNA levels of Cr stress response proteins, including HSP90-1 and MT-1, have been reported in the Brassica napus plant. The stressed environment around the plants may stimulate the biosynthesis of phytochelatins and metal-binding proteins, which have a protective role in plant’s growth and development.
Article Details
Article Details
Abiotic stress, Chromium, Heavy metals, Oxidative stress, Phytochelatins
Adesodun, J.K., Atayese, M.O., Agbaje, T.A., Osadiaye, B.A., Mafe, O.F. & Soretire, A.A. (2010). Phytoremediation potentials of sunflowers (Tithonia diversifolia and Helianthus annuus) for metals in soils contaminated with zinc and lead nitrates. Water Air Soil Pollut., 207, 195- 201. https://doi.org/10.1007/s11270-009-0128-3
Adki, V.S., Jadhav, J.P. & Bapat, V.A. (2013). Nopalea cochenillifera, a potential chromium (VI) hyperaccumulator plant. Environ. Sci. Pollut. Res., 20(2), 1173-1180. https://doi.org/10.1007/s11356-012-1125-4
Afonso, T.F., Demarco, C.F., Pieniz, S., Camargo, FAO., Quadro, M.S. & Andreazza, R. (2019). Potential of Solanum viarum Dunal in use for phytoremediation of heavy metals to mining areas, southern Brazil. Env. Sci. Pollut. Res., 26, 24132–24142. https://doi.org/10.1007/s11356-019-05460-z
Afshan, S., Ali, S., Bharwana, S.A., Rizwan, M., Farid, M., Abbas, F., Ibrahim, M., Mehmood, M.A. & Abbasi, G.H. (2015). Citric acid enhances the phytoextraction of chromium, plant growth and photosynthesis by alleviating the oxidative damages in Brassica napus L. Environ. Sci. Pollut. Res.., 22, 11679–11689. https://doi.org/10.1007/s11356-015-4396-8
Agar, G., Taspinar, M.S., Yildirim, E., Aydin, M. & Yuce, M. (2020). Effects of ascorbic acid and copper treatments on metallothionein gene expression and antioxidant enzyme activities in Helianthus annuus L. exposed to chromium stress. Plant Growth Regul., 39 (2), 897-904. https://doi.org/10.1007/s00344-019-10031-0
Ahemad, M. (2019). Remediation of metalliferous soils through the heavy metal resistant plant growth promoting bacteria: paradigms and prospects. Arab. J. Chem., 12(7), 1365-1377. https://doi.org/10.1016/j.arabjc.2014.1 1.020
Ahmad, M.S.A., Ashraf, M. & Hussain, M. (2011). Phytotoxic effects of nickel on yield and concentration of macro-and micro-nutrients in sunflower (Helianthus annuus L.) achenes. J. Hazard. Mater., 185, 1295-1303. https://doi.org/10.1016/j.jhazmat.2010.10.045
Ahmad, R., Ali, S., Abid, M., Rizwan, M., Ali, B., Tanveer, A. & Ghani, M.A. (2020). Glycine betaine alleviates the chromium toxicity in Brassica oleracea L. by suppressing oxidative stress and modulating the plant morphology and photosynthetic attributes. Environ. Sci.Pollut.Res., 27(1), 1101-1111. https://doi.org/10.1007/s11356-019-06761-z
Alamri, S., Ali, H.M., Khan, M.I.R., Singh, V.P. & Siddiqui, M.H. (2020). Exogenous nitric oxide requires endogenous hydrogen sulphide to induce the resilience through sulphur assimilation in tomato seedlings under hexavalent chromium toxicity. Plant Physiol. Biochem., 155, 20-34. https://doi.org/10.1016/j.plaphy.2020.07.003
Ali, H., Khan, E. & Sajad, M.A. (2013). Phytoremediation of heavy metals—concepts and applications. Chemosphere 91(7), 869–881. https://doi.org/10.1016/j.chemosphere. 2013.01.075
Ali, S., Bharwana, S.A., Rizwan, M., Farid, M., Kanwal, S., Ali, Q., Ibrahim, M., Gill, R.A. & Khan, M.D. (2015). Fulvic acid mediates chromium (Cr) tolerance in wheat (Triticum aestivum L.) through lowering of Cr uptake and improved antioxidant defence system. Environ. Sci. Pollut. Res., 22, 10601-10609. https://doi.org/10.1007/s11356-015-4271-7
Ali, S., Zeng, F., Cai, S., Qiu, B. & Zhang, G.P. (2011). The interaction of salinity and chromium in the influence of barley growth and oxidative stress. Plant Soil Environ., 57(4), 153–159. https://doi.org/10.17221/335/2010-PSE
Anjana, K., Kaushik, A., Kiran, B. & Nisha, R. (2007). Biosorption of Cr (VI) by immobilized biomass of two indigenous strains of cyanobacteria isolated from metal contaminated soil. J. Hazard. Mater., 148(1-2), 383-386. https://doi.org/10.1016/j.jhazmat.2007.02.051
Anjum, S.A., Ashraf, U., Imran, K.H.A.N., Tanveer, M., Shahid, M., Shakoor, A. & Longchang, W.A.N.G. (2017). Phyto-toxicity of chromium in maize: oxidative damage, osmolyte accumulation, anti-oxidative defence and chromium uptake. Pedosphere 27(2), 262-273. https://doi.org/10.1016/S1002-0160(17)60315-1
Ansarypour, Z. & Shahpiri, A. (2017) Heterologous expression of a rice metallothionein isoform (OsMTI-1b) in Saccharomyces cerevisiae enhances cadmium, hydrogen peroxide and ethanol tolerance. Brazilian J. Microbiol., 48(3), 537–543. https://doi.org/10.1016/ j.bjm.2016.10.024
Arora, A., Saxena, S. & Sharma, D.K. (2006). Tolerance and phytoaccumulation of Chromium by three Azolla species. World J. Microbiol. Biotechnol., 22(2), 97–100. https://doi.org/ 10.1007/s11274-005-9000-9
Babula, P., Adam, V., Opatrilova, R., Zehnalek, J., Havel, L. & Kizek, R. (2008). Uncommon heavy metals, metalloids and their plant toxicity: A review. Environ. Chem. Lett., 6(4), 189–213. https://doi.org/10.1007/978-1-4020-9654-9_14
Barbosa, R.M.T., Almeida, A.A.F., Mielke, M.S., Loguercio, L.L., Mangabeira, P.A.O. & Gomes, F.P. (2007). A physiological analysis of Genipa americana L.: a potential phytoremediator tree for chromium polluted watersheds. Environ. Exp. Bot., 61 (3), 264–271. https://doi.org/10.1016/j.envexpbot.2007.06.001
Barton, L.L., Johnson, G.V., Onan, A.G. & Wagener, B.M. (2000). Inhibition of ferric chelate reductase in alfalfa roots by Cobalt, Nickel, Chromium, and Copper. J. Plant Nutr. Soil Sci., 23(11-12), 1833–1845. https://doi.org/10.1080/01904160009382146
Benatti, R.M., Yookongkaew, N., Meetam, M., Guo, W.J., Punyasuk, N., AbuQamar, S. & Goldsbrough, P. (2014). Metallothionein deficiency impacts copper accumulation and redistribution in leaves and seeds of Arabidopsis. New Phytol., 202(3), 940-951. https://doi.org/ 10.1111/nph.12718
Berni, R., Luyckx, M., Xu, X., Legay, S., Sergeant, K., Hausman, J.F., Lutts, S., Cai, G. & Guerriero, G. (2019). Reactive oxygen species and heavy metal stress in plants: impact on the cell wall and secondary metabolism. Environ. Exp. Bot., 161, 98–106. https://doi.org/ 10.1016/j.envexpbot.2018.10.017
Blindauer, C.A. & Leszczyszyn, O.I. (2010). Metallothioneins: unparalleled diversity in structures and functions for metal ion homeostasis and more. Nat. Prod. Rep., 27, 720–741. https://doi.org/10.1039/B906685N
Bloem, E., Haneklaus, S., Haensch, R. & Schnug, E. (2017). EDTA application on agricultural soils affects microelement uptake of plants. Sci. Total Environ., 577, 166–173. https://doi.org/10.1016/j.scitotenv.2016.10.153
Bluskov, S., Arocena, J.M., Omotoso, O.O. & Young, J.P. (2005). Uptake, distribution, and speciation of chromium in Brassica juncea. Int. J. Phytorem., 7(2), 153-165. https://doi.org/10.1080/16226510590950441
Boechat, C.L., Carlos, F.S., Gianello, C. & de Oliveira Camargo, F.A. (2016). Heavy metals and nutrients uptake by medicinal plants cultivated on multi-metal contaminated soil samples from an abandoned gold ore processing site. Water Air Soil Pollut., 227(10), 1-11. https://doi.org/10.1007/s11270-016-3096-4
Brasili, E., Bavasso, I., Petruccelli, V., Vilardi, G., Valletta, A., Dal Bosco, C. & Di Palma, L. (2020). Remediation of hexavalent chromium contaminated water through zero-valent iron nanoparticles and effects on tomato plant growth performance. Sci. Rep., 10(1), 1-11. https://doi.org/10.1038/s41598-020-58639-7
Braud, A., Jezequel, K., Bazot, S. & Lebeau, T. (2009). Enhanced phytoextraction of an agricultural Cr- and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria. Chemosphere, 74(2), 280-286. https://doi.org/10.1016/j.chemosphere.2008.09.013
Brunetti, G., Farrag, K., Rovira, P.S., Nigro, F. & Senesi, N. (2011). Greenhouse and field studies on Cr, Cu, Pb and Zn phytoextraction by Brassica napus from contaminated soils in the Apulia region, Southern Italy. Geoderma, 160(3-4), 517–523. https://doi.org/10.1016/ j.geoderma.2010.10.023
Buendía-González, L., Orozco-Villafuerte, J., Cruz-Sosa, F., Barrera-Díaz, C.E. & Vernon-Carter, E.J. (2010). Prosopis laevigata a potential chromium (VI) and cadmium (II) hyperaccumulator desert plant. Biores. Technol., 101(15), 5862-5867. https://doi.org/10.1016/j.biortech.2010.03.027
Calheiros, C.S.C., Rangel, A.O.S.S. & Castro, P.M.L. (2008). The effects of tannery waste water on the development of different plant species and chromium accumulation in Phragmites australis. Arch. Environ. Contam. Toxicol., 55(3), 404-414. https://doi.org/10.1007/s00244-007-9087-0
Chand, S., Singh, S., Singh, V.K. & Patra, D.D. (2015). Utilization of heavy metal-rich tannery sludge for sweet basil (Ocimum basilicum L.) cultivation. Environ. Sci. Pollut. Res., 22(10), 7470–7475. https://doi.org/10.1007/s11356-015-4446-2
Chen, L., Luo, S., Li, X., Wan, Y., Chen, J. & Liu, C. (2014). Interaction of Cd-hyperaccumulator Solanum nigrum L. and functional endophyte Pseudomonas sp. Lk9 on soil heavy metals uptake. Soil Biol. Biochem., 68, 300-308. https://doi.org/10.1016/ j.soilbio.2013.10.021
Chen, Q., Wu, K., Tang, Z., Guo, Q., Guo, X. & Wang, H. (2017). Exogenous ethylene enhanced the cadmium resistance and changed the alkaloid biosynthesis in Catharanthus roseus seedlings. Acta Physiol. Plant., 39(12), 1-12. https://doi.org/10.1007/s11738-017-2567-6
Cherian, M.G. & Kang, Y.J. (2006). Metallothionein and liver cell regeneration. Exp. Biol. Med., 231(2), 138–144. https://doi.org/10.1177/153537020623100203
Choo, T.P., Lee, C.K., Low, K.S. & Hishamuddin, O. (2006). Accumulation of chromium (VI) from aqueous solutions using water lilies (Nymphaea spontanea). Chemosphere, 62(6), 961–967. https://doi.org/10.1016/j.chemosphere.2005.05.052
Choppala, G., Kunhikrishnan, A., Seshadri, B., Park, J.H., Bush, R. & Bolan, N. (2018). Comparative sorption of chromium species as influenced by pH, surface charge and organic matter content in contaminated soils. J. Geochem. Explor., 184, 255-260. https://doi.org/10.1016/j.gexplo.2016.07.012
Clemens, S. (2006). Evolution and function of phytochelatin synthases. J. Plant Physiol., 163(3), 319–332. https://doi.org/10.1016/j.jplph.2005.11.010
Cristaldi, A., Conti, G.O., Jho, E.H., Zuccarello, P., Grasso, A., Copat, C. & Ferrante, M. (2017). Phytoremediation of contaminated soils by heavy metals and PAHs. A brief review. Environ. Technol. Innov., 8, 309–326. https://doi.org/10.1016/j.eti.2017.08.002
Danish, S., Kiran, S., Fahad, S., Ahmad, N., Ali, M.A., Tahir, F.A., Rasheed, M.K., Shahzad, K., Li, X. & Wang, D. (2019). Alleviation of chromium toxicity in maize by Fe fortification and chromium tolerant ACC deaminase producing plant growth promoting rhizobacteria. Ecotoxicol. Environ. Safety, 185, 109706. https://doi.org/10.1016/j.ecoenv.2019.109706
Del Bubba, M., Ancillotti, C., Checchini, L., Ciofi, L., Fibbi, D., Gonnelli, C. & Mosti, S. (2013). Chromium accumulation and changes in plant growth, selected phenolics and sugars of wild type and genetically modified Nicotiana langsdorffii. J. Hazard. Mater., 262, 394-403. https://doi.org/10.1016/j.jhazmat.2013.08.073
Dey, S. & Paul, A.K. (2016). Evaluation of chromate reductase activity in the cell-free culture filtrate of Arthrobacter sp. SUK 1201 isolated from chromite mine overburden. Chemosphere, 156, 69-75. https://doi.org/10.1016/j.chemosphere.2016.04.101
Dhir, B., Sharmila, P., Saradhi, P.P. & Nasim, S.A. (2009). Physiological and antioxidant responses of Salvinia natans exposed to chromium rich wastewater. Ecotoxicol. Environ. Safety, 72(6), 1790-1797. https://doi.org/10.1016/j.ecoenv.2009.03.015
Diwan, H., Khan, I., Ahmad, A. & Iqbal, M. (2010) Induction of phytochelatins and antioxidant defence system in Brassica juncea and Vigna radiata in response to Cr treatments. Plant Growth Regul., 61(1), 97-107. DOI 10.1007/s10725-010-9454-0
Du, J., Yang, J.L. & Li, C.H. (2012) Advances in metallothionein studies in forest trees. Plant OMICS, 5(1), 46–51
Eggs, N., Salvarezza, S., Azario, R., Fernández, N. & García, M.D.C. (2012). Adsorption de cromo hexavalente en la cáscara de arroz modificada químicamente. Avances en ciencias e ingeniería, 3(3), 141-151. http://hdl.handle.net/20.500.12272/4908
Emamverdian, A., Ding, Y., Mokhberdoran, F. & Xie, Y. (2015). Heavy metal stress and some mechanisms of plant defence response. Sci. World J., 756120. https://doi.org/10.1155/ 2015/756120
Ertani, A., Mietto, A., Borin, M. & Nardi, S. (2017). Chromium in agricultural soils and crops: a review. Water Air Soil Pollut., 228(5), 190. https://doi.org/10.1007/s11270-017-3356-y
Fan, W.J., Feng, Y.X., Li, Y.H., Lin, Y.J. & Yu, X.Z. (2020). Unravelling genes promoting ROS metabolism in subcellular organelles of Oryza sativa in response to trivalent and hexavalent chromium. Sci. Total Env., 744, 140951, 1-12. https://doi.org/10.1016/ j.scitotenv.202 0.140951
Farid, M., Ali, S., Akram, N.A., Rizwan, M., Abbas, F., Bukhari, S.A.H. & Saeed, R. (2017). Phyto-management of Cr contaminated soils by sunflower hybrids: physiological and biochemical response and metal extractability under Cr stress. Environ. Sci. Pollut. Res., 24(20), 16845-16859. https://doi.org/10.1007/s11356-017-9247-3
Farid, M., Ali, S., Rizwan, M., Yasmeen, T., Arif, M.S., Riaz, M. & Ayub, M.A. (2020). Combined effects of citric acid and 5-aminolevulinic acid in mitigating chromium toxicity in sunflower (Helianthus annuus L.) grown in Cr spiked soil. Pak. J. Agric. Sci., 57(2), 477-488. DOI: 10.21162/PAKJAS/20.9332
Feng, Y.X., Yu, X.Z., Mo, C.H. & Lu, C.J. (2019). Regulation network of sucrose metabolism in response to trivalent and hexavalent chromium in Oryza sativa. J. Agric. Food Chem., 67, 9738–9748. https://doi.org/10.1021/acs.jafc.9b01720
Fidalgo, F., Azenha, M., Silva, A.F., de Sousa, A., Santiago, A., Ferraz, P. & Teixeira, J. (2013). Copper-induced stress in Solanum nigrum L. and antioxidant defence system responses. Food Energy Sec., 2(1), 70-80. https://doi.org/10.1002/fes3.20
Flores-Alvarez, L.J., Corrales-Escobosa, A.R., Cortés-Penagos, C., Martínez-Pacheco, M., WrobelZasada, K., Wrobel-Kaczmarczyk, K. & Gutiérrez-Corona, F. (2012). The Neurospora crassa chr-1 gene is upregulated by chromate and its encoded CHR-1 protein causes chromate sensitivity and chromium accumulation. Curr. Genet., 58(5), 281-290. https://doi.org/10.1007/s00294-012-0383-5
Fozia, A., Muhammad, A.Z., Muhammad, A. & Zafar, M.K. (2008). Effect of chromium on growth attributes in sunflower (Helianthus annuus L.). J. Env. Sci., 20(12), 1475-1480. https://doi.org/10.1016/S1001-0742(08)625 52-8
Gardea-Torresdey, J.L., Peralta-Videa, J.R., Montes, M., De la Rosa, G. & Corral-Diaz, B. (2004). Bioaccumulation of cadmium, chromium and copper by Convolvulus arvensis L.: impact on plant growth and uptake of nutritional elements. Biores. Technol., 92(3), 229-235. https://doi.org/10.1016/j.biortech.2003.10.002
Gautam, V., Sharma, P., Bakshi, P., Arora, S., Bhardwaj, R., Paray, B.A. & Ahmad, P. (2020). Effect of Rhododendron arboreum Leaf Extract on the Antioxidant Defence System against Chromium (VI) Stress in Vigna radiata Plants. Plants, 9(2), 1-22. https://doi.org/10.3390/plants9020164
Gill, R.A., Ali, B., Islam, F., Farooq, M.A., Gill, M.B., Mwamba, T.M. & Zhou, W. (2015). Physiological and molecular analyses of black and yellow seeded Brassica napus regulated by 5- aminolivulinic acid under chromium stress. Plant Physiol. Biochem., 94, 130-143. https://doi.org/10.1016/j.plaphy.2015.06.001
Gill, R. A., Zhang, N., Ali, B., Farooq, M. A., Xu, J., Gill, M. B. & Zhou, W. (2016). Role of exogenous salicylic acid in regulating physio-morphic and molecular changes under Cr toxicity in black-and yellow-seeded Brassica napus L. Environmental Science and Pollution Research, 23(20), 20483-20496. https://doi.org/10.1007/s11356-016-7167-2
Gill, R. A., Hu, X. Q., Ali, B., Yang, C., Shou, J. Y., Wu, Y. Y. & Zhou, W. J. (2014). Genotypic variation of the responses to chromium toxicity in four oilseed rape cultivars. Biologia plantarum, 58(3), 539-550. https://doi.org/10.1007/s10535-014-0430-9
Gill, R. A., Ali, B., Yang, S., Tong, C., Islam, F., Gill, M. B. & Zhou, W. (2017). Reduced glutathione mediates pheno-ultrastructure, kinome and transportome in chromium-induced Brassica napus L. Frontiers in plant science, 8, 2037. https://doi.org/10.3389/fpls.2017.02037
Gharieb, M.M. & Gadd, G.M. (2004). Role of glutathione in detoxification of metal (loid) s by Saccharomyces cerevisiae. Biometals, 17(2), 183-188.
Gomes, M.A. da C, Hauser-Davis, R.A., Suzuki, M.S. & Vitoria, A.P. (2017). Plant chromium uptake and transport, physiological effects and recent advances in molecular investigations. Ecotoxicol. Environ. Safety, 140, 55-64. https://doi.org/10.1016/j.ecoenv.2017.0 1.0 42
Grennan, A.K. (2011). Metallothioneins, a diverse protein family. Plant Physiol., 155(4), 1750–1751. https://doi.org/10.1104/pp.111.900407
Guo, J., Xu, L., Su, Y., Wang, H., Gao, S., Xu, J. & Que, Y. (2013). ScMT2-1-3, a metallothionein gene of sugarcane, plays an important role in the regulation of heavy metal tolerance/accumulation. BioMed Res. Int., 2013, 1-12. https://doi.org/10.3389/ fpls.2017.02262
Gupta, D., Vandenhove, H. & Inouhe, M. (2013). Role of phytochelatins in heavy metal stress and detoxification mechanisms in plants. In: Heavy Metal Stress in Plants, 73–94. https://doi.org/10.1007/978-3-642-38469-1_4
Gupta, P., Rani, R., Chandra, A., Varjani, S.J. & Kumar, V. (2017). Effectiveness of plant growth-promoting rhizobacteria in phytoremediation of chromium stressed soils. Biorem. J., 301–312. https://doi.org/10.1007/978-981-10-7413-4_16
Hall, J.L. (2002). Cellular mechanisms for heavy metal detoxification and tolerance. J. Exp. Bot., 53(366), 1–11. https://doi.org/10.1093/jexbot/53.366.1
Hao, X.Z., Zhou, D.M., Li, D.D. & Jiang, P. (2012). Growth, cadmium and zinc accumulation of ornamental sunflower (Helianthus annuus L.) in contaminated soil with different amendments. Pedosphere, 22(5), 631-639. https://doi.org/10.1016/S1002-0160(12) 60048-4
Haque, N., Peralta-Videa, J.R., Jones, G.L., Gill, T.E. & Gardea-Torresdey, J.L. (2008). Screening the phytoremediation potential of desert broom (Baccharis sarothroides Gray) growing on mine tailings in Arizona, USA. Environ. Pollut., 153(2), 362–368 https://doi.org/ 10.1016/j.envpol.2007.08.024.
Harmens, H., DenHartog, P.R., ten Bookum, W.M. & Verkleij, J.A.C. (1993). Increased zinc tolerance in Silene vulgaris (Moench) Garcke is not due to increased production of phytochelatins. Plant Physiol., 103, 1305–1309. https://doi.org/10.1104/pp.103.4.1305
Hassinen, V.H., Tervahauta, A.I., Schat, H. & Kärenlampi, S.O. (2011). Plant metallothioneins–metal chelators with ROS scavenging activity. Plant Biol., 13(2), 225–232. https://doi.org/ 10.1111/j.1438-8677.2010.00398.x
Hayat, S., Khalique, G., Irfan, M., Wani, A.S., Tripathi, B.N. & Ahmad, A. (2012). Physiological changes induced by chromium stress in plants: An overview. Protoplasma, 249(3), 599–611. https://doi.org/10.1007/s00709-011-0331-0
Hegelund, J.N., Schiller, M., Kichey, T., Hansen, T.H., Pedas, P., Husted, S. & Schjoerring, J.K. (2012). Barley metallothioneins: MT3 and MT4 are localized in the grain aleurone layer and show differential zinc binding. Plant Physiol., 159(3), 1125-1137. https://doi.org/10. 1104/pp.112.197798
Heiss, S., Wachter, A., Bogs, J., Cobbett, C. & Rausch, T. (2003). Phytochelatin synthase (PCS) protein is induced in Brassica juncea leaves after prolonged Cd exposure. J Exp. Bot., 54(389), 1833–1839. https://doi.org/10.1093/jxb/erg205
Hose, G.C., Symington, K., Lott, M.J. & Lategan, M.J. (2016). The toxicity of arsenic (III), chromium (VI) and zinc to groundwater copepods. Environ. Sci. Pollut. Res., 23(18), 18704-18713. https://doi.org/10.1007/s11356-016-7046-x
Hossain, M.A., Piyatida, P., da Silva, J.A.T. & Fujita, M. (2012). Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J. Bot., 872-875. doi:10.1155/2012/872875
Houri, T., Khairallah, Y., Al Zahab, A., Osta, B., Romanos, D. & Haddad, G. (2020). Heavy metals accumulation effects on the photosynthetic performance of geophytes in Mediterranean reserve. J King Saud Univ. – Sci., 32(1), 874-880. https://doi.org/10.1016/ j.jksus. 2019.04.005
Huang, G.Y. & Wang, Y.S. (2009). Expression analysis of type 2 metallothionein gene in mangrove species (Bruguiera gymnorrhiza) under heavy metal stress. Chemosphere, 77(7), 1026– 1029. https://doi.org/10.1016/j.chemosphere.2009.07.073
Huda, A.K.M., Swaraz, A.M., Reza, M.A., Haque, M.A. & Kabir, A.H. (2016). Remediation of chromium toxicity through exogenous salicylic acid in rice (Oryza sativa L.). WaterAir Soil Pollut., 227(8), 1-11. DOI 10.1007/s11270-016-2985-x
Huda, A.N., Haque, M.A., Zaman, R., Swaraz, A.M. & Kabir, A.H. (2017). Silicon ameliorates chromium toxicity through phytochelatin-mediated vacuolar sequestration in the roots of Oryza sativa (L.). Int. J. Phytorem., 19(3), 246-253. https://doi.org/10.1080/15226514.2016.1211986
Hussain, A., Ali, S., Rizwan, M., Rehman, M.Z., Hameed, A., Hafeez, F., Alamri, S.A., Alyemeni, M.N. & Wijaya, L. (2018). Role of zinc–lysine on growth and chromium uptake in rice plants under Cr stress. J. Plant Growth Regul., 37(4), 1413-1422. https://doi.org/10.1007/ s00344-018-9831-x
Imran, M.A., Khan, R.M., Ali, Z. & Mahmood, T. (2013). Toxicity of arsenic (As) on seed germination of sunflower (Helianthus annuus L.). Int. J Phys. Sci., 8(17), 840-847. https://doi.org/10.5897/IJPS2013.3894
Islam, F., Yasmeen, T., Arif, M.S., Riaz, M., Shahzad, S.M., Imran, Q. & Ali, I. (2016). Combined ability of chromium (Cr) tolerant plant growth promoting bacteria (PGPB) and salicylic acid (SA) in attenuation of chromium stress in maize plants. Plant Physiol. Biochem., 108, 456-467. https://doi.org/10.1016/j.plaphy.2016.08.014
Jabeen, N., Abbas, Z., Iqbal, M., Rizwan, M., Jabbar, A., Farid, M., Ali, S., Ibrahim, M. & Abbas, F. (2015). Glycine betaine mediates chromium tolerance in mung bean through lowering of Cr uptake and improved antioxidant system. Arch. Agron. Soil Sci., 62(5), 648–662. https://doi.org/10.1080/03650340.2015.1082032
Jain, R., Singh, S.P., Singh, A., Singh, S., Tripathi, P., Chandra, A. & Solomon, S. (2016). Study on physio-biochemical attributes and metallothionein gene expression affected by chromium (VI) in sugarcane (Saccharum spp. hybrid). J. Env. Biol., 37(3), 375.
Joutey, N.T., Sayel, H., Bahafid, W. & El Ghachtouli, N. (2015). Mechanisms Cr (VI) resistance and removal by microorganisms. Rev. Env. Contam. Toxicol., 233, 45-69. https://doi.org/10.1007/978-3-319-10479-9_2
Junior, C.A.L., Mazzafera, P. & Arruda, M.A.Z. (2014). A comparative ionomic approach focusing on cadmium effects in sunflowers (Helianthus annuus L.). Environ. Exp. Bot., 107, 180-186. https://doi.org/10.1016/j.envexpbot.2014.06.002
Kabir, A.H. (2016). Biochemical and molecular changes in rice seedlings (Oryza sativa L.) to cope with Cr stress. Plant Biol., 18(4), 710-719. https://doi.org/10.1111/ plb.12436
Kale, R.A., Lokhande, V.H. & Ade, A.B. (2015). Investigation of chromium phytoremediation and tolerance capacity of a weed, Portulaca oleracea L. in a hydroponic system. Water Environ. J., 29(2), 236– 242. https://doi.org/10.1111/wej.12106
Karthik, C. & Arulselvi, P.I. (2017). Bio-toxic effect of chromium (VI) on plant growth promoting traits of novel Cellulosi microbium funkei strain AR8 isolated from Phaseolus vulgaris rhizosphere. Geomicrobiol. J., 34(5), 434-442. https://doi.org/10.1080/01490451. 2016.1219429
Karthik, C., Elangovana, N., Senthil Kumara, T., Govindharajua, S., Barathia, S., Ovesc, M. & Arulselvi, P.I. (2017). Characterization of multifarious plant growth promoting traits of rhizobacterial strain AR6 under Chromium (VI) stress. Microbiol. Res., 204, 65–71. https://doi.org/10.1016/j.micres.2017.07.008
Karthik, C., Oves, M., Thangabalu, R., Sharma, R., Santhosh, S.B. & Arulselvi, P.I. (2016). Cellulosimicrobium funkei-like enhances the growth of Phaseolus vulgaris by modulating oxidative damage under chromium (VI) toxicity. J. Adv. Res., 7(6), 839–850. https://doi.org/10.1016/j.jare.2016.08.007
Kaur, R., Yadav, P., Thukral, A.K., Sharma, A., Bhardwaj, R., Alyemeni, M.N., Wijaya, L. & Ahmad, P. (2018). Castasterone and citric acid supplementation alleviates cadmium toxicity by modifying antioxidants and organic acids in Brassica juncea. J. Plant Growth Regul., 37(1), 286-299. https://doi.org/10.1007/s00344-017-9727-1
Khan, M.S., Zaidi, A., Ahmad, W.P. & Oves, M. (2009). Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils: a review. Sustain. Agric. Res., 1, 319-350. https://doi.org/10.1007/s10311-008-0155-0
Khanna, K., Jamwal, V.L., Sharma, A., Gandhi, S.G., Ohri, P., Bhardwaj, R., Al-Huqail, A.A., Siddiqui, M.H., Ali, H.M. & Ahmad, P. (2019). Supplementation with plant growth promoting rhizobacteria (PGPR) alleviates cadmium toxicity in Solanum lycopersicum by modulating the expression of secondary metabolites. Chemosphere, 230, 628–639. https://doi.org/10.1016/j.chemosphere.2019.05.072
Kneer, R. & Zenk, M.H. (1992). Phytochelatins protect plant enzymes from heavy metal poisoning. Phytochem., 31(8), 2663-2667. https://doi.org/10.1016/0031-9422(92)83607-Z
Kohler, A., Blaudez, D., Chalot, M. & Martin, F. (2004). Cloning and expression of multiple metallothioneins from hybrid poplar. New Phytol., 164(1), 83–93. doi: 10.1111/j.1469-8137
Krzeslowska, M. (2011). The wall cell in plant cell response to trace metals: Polysaccharide remodelling and its role in defence strategy. Acta Physiol. Plant., 33(1), 35–51. https://doi.org/10.1007/s11738-010-0581-z
Kumar, R., Mishra, R. K., Mishra, V., Qidwai, A., Pandey, A., Shukla, S. K. & Dikshit, A. (2016). Detoxification and tolerance of heavy metals in plants. In Plant metal interaction, 335-359. Elsevier. https://doi.org/10.1016/B978-0-12-803158-2.00013-8
Kushwaha, B.K., Singh, S., Tripathi, D.K., Sharma, S., Prasad, S.M., Chauhan, D.K., Kumar, V. & Singh, V.P. (2019). New adventitious root formation and primary root biomass accumulation are regulated by nitric oxide and reactive oxygen species in rice seedlings under arsenate stress. J. Hazar. Mater., 361, 134-140. https://doi.org/10.1016/j.jhazmat.2018.08.035
Kushwaha, B.K. & Singh, V.P. (2020). Glutathione and hydrogen sulfide are required for sulfur-mediated mitigation of Cr (VI) toxicity in tomato, pea and brinjal seedlings. Plant Physiol., 168(2), 406-421. https://doi.org/10.1111/ppl.13024
Lena, Q.M. & Rao, G.N. (1997). Chemical Fractionation of Cadmium, Copper, Nickel, and Zinc in Contaminated Soils. J. Env. Qual., 26, 259-264. https://doi.org/10.2134/jeq1997. 00472425002600010036x
Levizou, E., Zanni, A.A. & Antoniadis, V. (2018). Varying concentrations of soil chromium (VI) for the exploration of tolerance thresholds and phytoremediation potential of the oregano (Origanum vulgare). Environ. Sci. Pollut. Res., 26, 14–23. https://doi.org/10.1007/s11356-018-2658-y
Li, J.T., Gurajala, H.K., Wu, L.H., van der Ent, A., Qiu, R.L., Baker, A.J.M., Tang, Y.T., Yang, X.E. & Shu, W.S. (2018). Hyperaccumulator plants from China: A synthesis of the current state of knowledge. Environ. Sci. Technol., 52(21), 11980-11994. https://doi.org/10.1021/ acs.est.8b01060
Lin, J., Jiang, W. & Liu, D. (2003). Accumulation of copper by roots, hypocotyls, cotyledons and leaves of sunflower (Helianthus annuus L.). Biores. Technol., 86(2), 151-155. https://doi.org/10.1016/S0960-8524(02)00152-9
Liu, J., Duan, C., Zhang, X., Zhu, Y. & Lu, X. (2011). Potential of Leersia hexandra Swartz for phytoextraction of Cr from soil. J. Hazar. Mater., 188(1-3), 85-91. https://doi.org/10. 1016/j.jhazmat.2011.01.066
Liu, J., Shi, X., Qian, M., Zheng, L., Lian, C., Xia, Y. & Shen, Z. (2015). Copper-induced hydrogen peroxide upregulation of a metallothionein gene, OsMT2c, from Oryza sativa L. confers copper tolerance in Arabidopsis thaliana. J. Hazar. Mater., 294, 99-108. https://doi.org/10.1016/j.jhazmat.2015.03.060
Lopez-Luna, J., Gonzalez-Chavez, M., Esparza-Garcia, F. & Rodriguez-Vazquez, R. (2009). Toxicity assessment of soil amended with tannery sludge, trivalent chromium and hexavalent chromium, using wheat, oat and sorghum plants. J. Hazar. Mater., 163 (2), 829-834. https://doi.org/10.1016/j.jhazmat.2008.07.034
Ma, Y., Prasad, M.N., Rajkumar, M. & Freitas, H. (2011). Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol. Adv., 29(2), 248-258. https://doi.org/10.1016/j.biotechadv.2010.12.001
Malandrino, M., Giacomino, A., Karthik, M., Zelano, I., Fabbri, D., Ginepro, M. & Abollino, O. (2017). Inorganic markers profiling in wild type and genetically modified plants subjected to abiotic stresses. Microchem. J., 134, 87-97. https://doi.org/10.1016/j.microc.2017.04.023
Maleki, M., Ghorbanpour, M. & Kariman, K. (2017). Physiological and antioxidative responses of medicinal plants exposed to heavy metals stress. Plant Gene, 11, 247–254. https://doi.org/10.1016/j.plgene.2017.04.006
Mallhi, A.I., Chatha, S.A.S., Hussain, A.I., Rizwan, M., Bukhar, S.A.H., Hussain, A. & Alyemeni, M.N. (2020). Citric acid assisted phytoremediation of chromium through sunflower plants irrigated with tannery wastewater. Plants, 9(3), 380. https://doi.org/10.3390/ plants9030380
Mallhi, Z.I., Rizwan, M., Mansh, A., Ali, Q., Asim, S., Ali, S., Hussain, A., Alrokayan, S.H., Khan, H.A. & Alam, P. (2019). Citric Acid Enhances Plant Growth, Photosynthesis, and Phytoextraction of Lead by Alleviating the Oxidative Stress in Castor Beans. Plants, 8(11), 525. https://doi.org/10.3390/plants8110525
Margoshes, M. & Vallee, B.L. (1957). A cadmium protein from equine kidney cortex. J. Amer. Chem. Soc., 79(17), 4813-4814. https://doi.org/10.1021/ja01574a064
Mehdipour, S., Vatanpour, V. & Kariminia, H.R. (2015). Influence of ion interaction on lead removal by a polyamide nanofiltration membrane. Desalination, 362, 84-92. https://doi.org/10.1016/j.desal.2015.01.030
Memon, A.R., Aktoprakligil, D., Zdemur, A. & Vertii, A. (2001). Heavy metal accumulation and detoxification mechanisms in plants. Turk. J. Bot., 25(3), 111-121.
Memon, A.R. & Schroder, P. (2009). Implications of metal accumulation mechanisms to phytoremediation. Environ. Sci. Pollut. Res., 16(2), 162-175. https://doi.org/10.1007/ s11356-008-0079-z
Mittler, R. (2017). ROS is good. Trends Plant Sci., 22(1), 11-19. https://doi.org/10.1016/ j.tplants.2016.08.002
Mittler, R., Vanderauwera, S., Suzuki, N., Miller, G., Tognetti, V.B., Vandepoele, K., Gollery, M., Shulaev, V. & Van Breusegem, F. (2011). ROS signaling: the new wave? Trends Plant Sci., 16(6), 300–309. https://doi.org/10.1016/j.tplants.2011.03.007
Mohanty, M. & Patra, H.K. (2020). Phyto-assessment of in situ weed diversity for their chromium distribution pattern and ac-cumulation indices of abundant weeds at South Kaliapani chromite mining area with their phytoremediation prospective. Ecotoxicol. Environ. Saf., 194, 110399. https://doi.org/10.1016/j.ecoenv.2020.110399
Mongkhonsin, B., Nakbanpote, W., Nakai, I., Hokura, A. & Jearanaikoon, N. (2011). Distribution and speciation of chromium accumulated in Gynura pseudochina (L.) DC. Environ. Exp. Bot., 74, 56-64. https://doi.org/10.1016/j.envexpbot.2011.04.018
Mukta, R.H., Khatun, M.R. & Nazmul Huda, A.K.M. (2019). Calcium induces phytochelatin accumulation to cope with chromium toxicity in rice (Oryza sativa L.). J.Plant Interac., 14(1), 295-302. https://doi.org/10.1080/17429145.2019.1629034
Naseem, S., Yasin, M., Ahmed, A. & Faisal, M. (2015). Chromium Accumulation and Toxicity in Corn (Zea mays L.) Seedlings. Polish J. Environ. Stud., 24(2), 899-904.
Nieboer, E. & Richardson, D.H.S. (1980). The replacement of the nondescript term %heavy metals by a biologically and chemically significant classification of metal ions. Environ. Pollut. Series B: Chem. Phys., 1(1), 3– 26. https://doi.org/10.1016/0143-148X(80)90017-8
Oh, Y.J., Song, H., Shin, W.S., Choi, S.J. & Kim, Y.H. (2007). Effect of amorphous silica and silica sand on removal of chromium (VI) by zero-valent iron. Chemosphere, 66(5), 858-865. https://doi.org/10.1016/j.chemosphere.2006.06.034
Pandey, V., Dixit, V. & Shyam, R. (2005). Antioxidative responses in relation to growth of mustard (Brassica juncea cv. Pusa Jaikisan) plants exposed to hexavalent chromium. Chemosphere, 61(1), 40-47. https://doi.org/10.1016/j.chemosphere.2005.03.026
Patra, D.K., Pradhan, C. & Patra, H.K. (2019). Chromium bioaccumulation, oxidative stress metabolism and oil content in lemon grass Cymbopogon flexuosus (Nees ex Steud.) W. Watson grown in chromium rich over burden soil of Sukinda chromite mine, India. Chemosphere, 218, 1082-1088. https://doi.org/10.1016/j.chemosphere.2018.11.211
Pelloux, J., Rusterucci, C. & Mellerowicz, E.J. (2007). New insight into pectin methyl esterase structure and function. Trends Plant Sci., 12(6), 267-277. https://doi.org/10.1016/ j.tplants.2007.04.001
Piechalak, A., Tomaszewska, B., Baralkiewicz, D. & Malecka, A. (2002) Accumulation and detoxification of lead ions in legumes. Phytochem., 60(2), 153–162. https://doi.org/10.1016/S0031-9422(02)00067-5
Postrigan, B.N., Knyaze, A.B., Kuluev, B.R., Yakhin, O.I. & Chemeris, A.V. (2012). Expression of the synthetic phytochelatin gene in tobacco. Russian J. Plant Physiol., 59(2), 275–280. https://doi.org/10.1134/S1021443712020136
Qi, Q., Guo, Z., Liang, Y., Li, K. & Xu, H. (2019). Hydrogen sulphide alleviates oxidative damage under excess nitrate stress through MAPK/NO signalling in cucumber. Plant Physiol. Biochem., 135, 1-8. https://doi.org/10.1016/j.plaphy.2018.11.017
Qureshi, F.F., Ashraf, M.A., Rasheed, R., Ali, S., Hussain, I., Ahmed, A. & Iqbal, M. (2020). Organic chelates decrease phytotoxic effects and enhance chromium uptake by regulating chromium-speciation in castor bean (Ricinus communis L.). Sci. Total Environ., 716, 137061, 1-13. https://doi.org/10.1016/j.scitotenv.2020.137061
Rabelo, F.H.S., Fernie, A.R., Navazas, A., Borgo, L., Keunen, E., da Silva, B.K.D.A., Cuypers, A. & Lavres, J. (2018). A glimpse into the effect of sulfur supply on metabolite profiling, glutathione and phytochelatins in Panicum maximum cv. Massai exposed to cadmium. Environ. Exp. Bot., 151, 76-88. https://doi.org/10.1016/j.envexpbot.2018.04.003
Rai, V., Vajpayee, P., Singh, S.N. & Mehrotra, S. (2004). Effect of chromium accumulation on photosynthetic pigments, oxidative stress defence system, nitrate reduction, proline level and eugenol content of Ocimum tenuiflorum L. Plant Sci., 167(5), 1159-1169. https://doi.org/10.1016/j.plantsci.2004.06.016
Rajkumar, M., Ae, N., Prasad, M.N. & Freitas, H. (2010). Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol., 28(3), 142-149. https://doi.org/10.1016/j.tibtech.2009.12.002
Ram, N.B., Gaurav, S. & Sikandar, I.M. (2019). Introduction to Industrial Wastes Containing Organic and Inorganic Pollutants and Bioremediation Approaches for Environmental Management- Book Chapter. Bioremediation of Industrial Waste for Environmental Safety. Springer Publications. 1-18. https://doi.org/10.1007/978-981-13-1891-7_1
Ranieri, E., Fratino, U., Petruzzelli, D. & Borges, A.C. (2013). A comparison between Phragmites australis and Helianthus annuus in chromium phytoextraction. Water Air Soil Pollut., 224, 1–9. https://doi.org/10.1007/s11270-013-1465-9
Rauser, W.E., Schupp, R. & Rennenberg, H. (1991). Cysteine, y-glutamylcysteine, and glutathione levels in maize seedlings. Plant Physiol., 97(1), 128-138. https://doi.org/10.1104/ pp.97.1.128
Redondo-Gómez, S., Mateos-Naranjo, E., Vecino-Bueno, I. & Feldman, S.R. (2011). Accumulation and tolerance characteristics of chromium in a cordgrass Cr-hyperaccumulator, Spartina argentinensis. J. Hazard. Mater., 185(2-3), 862-869. https://doi.org/10.1016/j.jhazmat. 2010.09.101
Rees, F., Sterckeman, T. & Morel, J.L. (2016). Root development of non-accumulating and hyperaccumulating plants in metal-contaminated soils amended with biochar. Chemosphere, 142, 48-55. https://doi.org/10.1016/j.chemosphere.2015.03.068
Sacky, J., Leonhardt, T., Borovicka, J., Gryndler, M., Briksi, A. & Kotrba, P. (2014). Intracellular sequestration of zinc, cadmium and silver in Hebeloma mesophaeum and characterization of its metallothionein genes. Fungal Genet. Biol., 67, 3-14. https://doi.org/10.1016/j.fgb.2014.03.003
Sajad, M.A., Khan, M.S., Bahadur, S., Naeem, A., Ali, H., Batool, F. & Batool, S. (2020). Evaluation of chromium phytoremediation potential of some plant species of Dir Lower, Khyber Pakhtunkhwa, Pakistan. Acta Ecologica Sinica, 40(2), 158-165. https://doi.org/10.1016/ j.chnaes.2019.12.002
Saleem, M.H., Ali, S., Hussain, S., Kamran, M., Chattha, M.S., Ahmad, S., Aqeel, M., Rizwan, M., Aljarba, N.H. & Alkahtani, S. (2020a). Flax (Linum usitatissimum L.): A Potential Candidate for Phytoremediation? Biological and Economical Points of View. Plants, 9(4), 496. https://doi.org/10.3390/plants9040496
Saleem, M.H., Fahad, S., Adnan, M., Ali, M., Rana, M.S., Kamran, M. & Hussain, R.M. (2020c). Foliar application of gibberellic acid endorsed phytoextraction of copper and alleviates oxidative stress in jute (Corchorus capsularis L.) plant grown in highly copper-contaminated soil of China. Environ. Sci. Pollut. Res., 27(29), 37121-37133. https://doi.org/10.1007/s11356-020-09764-3
Saleem, M.H., Fahad, S., Rehman, M., Saud, S., Jamal, Y., Khan, S. & Liu, L. (2020d). Morpho-physiological traits, biochemical response and phytoextraction potential of short-term copper stress on kenaf (Hibiscus cannabinus L.) seedlings. J. Life Environ. Sci., 8, e8321. https://doi.org/10.7717/peerj.8321
Sampanpanish, P., Pongsapich, W., Khaodhiar, S. & Khan, E. (2006). Chromium removal from soil by phytoremediation with weed plant species in Thailand. Water Air Soil Pollut., 6(1-2), 191-206. https://doi.org/10.1007/s11267-005-9006-1
Sanjay, M.S., Sudarsanam, D., Raj, G.A. & Baskar, K. (2020). Isolation and identification of chromium reducing bacteria from tannery effluent. J. King Saud Univ. – Sci., 32(1), 265-271. https://doi.org/10.1016/j.jksus.2018.05.001
Scheller, H.V. & Ulvskov, P. (2010). Hemicelluloses. Ann. Rev. Plant Biol., 61, 263–289. https://doi.org/10.1146/annurev-arplant-042809-112315
Schneider, S. & Bergmann, L. (1995). Regulation of glutathione synthesis in suspension cultures of parsley and tobacco. Bot. Acta, 108(1), 34-40. https://doi.org/10.1111/j.1438-8677.1995.tb00828.x
Schützendübel, A. & Polle, A. (2002). Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J. Exp. Bot., 53(372), 1351–1365. https://doi.org/10.1093/jexbot/53.372.1351
Scoccianti, V., Bucchini, A.E., Iacobucci, M., Ruiz, K.B. & Biondi, S. (2016). Oxidative stress and antioxidant responses to increasing concentrations of trivalent chromium in the Andean crop species Chenopodium quinoa Willd. Ecotoxicol. Environ. Saf., 133, 25–35. https://doi.org/10.1016/j.ecoenv.2016.06.036
Seleiman, M.F., Ali, S., Refay, Y., Rizwan, M., Alhammad, B.A. & El-Hendawy, S.E. (2020). Chromium resistant microbes and melatonin reduced Cr uptake and toxicity, improved physio-biochemical traits and yield of wheat in contaminated soil. Chemosphere, 250, 126239, 1-12. https://doi.org/10.1016/j.chemosphere.2020.126239
Sessitsch, A., Howieson, J.G., Perret, X., Antoun, H. & Martinez-Romero, E. (2002). Advances in Rhizobium research. Crit. Rev. Plant Sci., 21(4), 323–378. https://doi.org/10.1080/0735-260291044278
Shahandeh, H. & Hossner, L.R. (2000). Plant screening for chromium phytoremediation. Int. J. Phytorem., 2(1), 31-51. https://doi.org/10.1080/15226510008500029
Shahid, M., Pourrut, B., Dumat, C., Nadeem, M., Aslam, M. & Pinelli, E. (2014). Heavy metal induced reactive oxygen species: phytotoxicity and physicochemical changes in plants. Rev. Environ. Contam. Toxicol., 232, 1-44. https://doi.org/10.1007/978-3-319-06746-9_1
Shahid, M., Shamshad, S., Rafiq, M., Khalid, S., Bibi, I., Niazi, N.K., Dumat, C. & Rashid, M.I. (2017). Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review. Chemosphere, 178, 513-533. https://doi.org/10.1016/j.chemosphere. 2017.03.074
Shams, K.M., Tichy, G., Fische, A., Sager, M., Peer, T., Bashar, A. & Filip, K. (2010). Aspects of phytoremediation for chromium contaminated sites using common plants Urtica dioica, Brassica napus and Zea mays. Plant Soil, 328(1), 175-189. https://doi.org/10.1007/ s11104-009-0095-x
Shanker, A.K., Cervantes, C. & Loza-Tavera H (2005). Chromium toxicity in plants. Env. Int., 31(5), 739-753. https://doi.org/10.1016/j.envint.2005.02.003
Sharma, A., Kapoor, D., Wang, J., Shahzad, B., Kumar, V., Bali, A.S. & Yan, D. (2020). Chromium bioaccumulation and its impacts on plants: an overview. Plants, 9(1), 100. https://doi.org/10.3390/plants9010100
Sharma, A., Shahzad, B., Kumar, V., Kohli, S.K., Sidhu, G.P.S., Bali, A.S., Handa, N., Kapoor, D., Bhardwaj, R. & Zheng, B. (2019). Phytohormones regulate accumulation of osmolytes under abiotic stress. Biomolecules, 9(7), 285. https://doi.org/10.3390/biom9070285
Sharma, P., Jha, A.B., Dubey, R.S. & Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defence mechanism in plants under stressful conditions. J. Bot., 217037, 1-26. doi:10.1155/2012/217037
Sharma, R., Bhardwaj, R., Handa, N., Gautam, V., Kohli, S.K., Bali, S., Kaur, P., Thukral, A.K., Arora, S., Ohri, P. & Vig, A.P. (2016). Response of phytochelatins and metallothionins in alleviation of heavy metal stress in plants: an overview. Plant Metal Interac., 263-277. https://doi.org/10.1016/B978-0-12-803158-2.00010-2
Shen, Z.J., Xu, D.C., Chen, Y.S. & Zhang, Z. (2017). Heavy metals translocation and accumulation from the rhizosphere soils to edible parts of medicinal plants Fengdan (Peonia ostia) grown on a metal mining area, China. Ecotoxicol. Environ. Saf., 143, 19-37. https://doi.org/10.1016/j.ecoenv.2017.04.042
Sheng, X., He, L., Wang, Q., Ye, H. & Jiang, C. (2008). Effects of inoculation of biosurfactant-producing Bacillus sp. J119 on plant growth and cadmium uptake in a cadmium-amended soil. J. Hazard. Mater., 155(1-2), 17-22. https://doi.org/10.1016/j.jhazmat. 2007.10.107
Shukla, D., Tiwari, M., Tripathi, R.D., Nath, P. & Trivedi, P.K. (2013). Synthetic phytochelatins complement a phytochelatin deficient Arabidopsis mutant and enhance the accumulation of heavy metal(loid)s. Biochem. Biophys. Res. Commun., 434(3), 664–669. https://doi.org/10.1016/j.bbrc.2013.03.138
Shukla, O.P., Juwarkar, A.A., Singh, S.K., Khan, S. & Rai, U.N. (2011). Growth responses and metal accumulation capabilities of woody plants during the phytoremediation of tannery sludge. Waste Management, 31(1), 115-123. https://doi.org/10.1016/j.wasman.2010.08.022
Singh, H.P., Mahajan, P., Kaur, S., Batish, D.R. & Kohli, R.K. (2013). Chromium toxicity and tolerance in plants. Environ. Chem. Lett., 11(3), 229-254. https://doi.org/10.1007/s10311-013-0407-5
Singh, S., Parihar, P., Singh, R., Singh, V.P. & Prasad, S.M. (2016). Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Front. Plant Sci., 6, 1143. https://doi.org/10.3389/fpls.2015.01143
Singh, S. & Prasad, S.M. (2019). Management of chromium (VI) toxicity by calcium and sulphur in tomato and brinjal: Implication of nitric oxide. J. Hazard. Mater., 373, 212-223. https://doi.org/10.1016/j.jhazmat.2019.01.044
Singh, S., Prasad, S.M. & Singh, V.P. (2020). Additional calcium and sulphur manage hexavalent chromium toxicity in Solanum lycopersicum L. and Solanum melongena L. seedlings by involving nitric oxide. J. Hazard. Mater., 122607, 1-11. https://doi.org/10.1016 /j.jhazmat.2020.122607
Sinha, V., Pakshirajan, K. & Chaturvedi, R. (2018). Chromium tolerance, bioaccumulation and localization in plants: an overview. J. Env.l Manage., 206, 715–730. https://doi.org/ 10.1016/j.jenvman.2017.10.033
Skeffington, R.A., Shewry, P.R. & Peterson, P.J. (1976). Chromium uptake and transport in barley seedlings (Hordeum vulgare L.). Planta, 132(3), 209–214. https://doi.org/10.1007/ BF00399719
Smirnoff, N. & Arnaud, D. (2019). Hydrogen peroxide metabolism and functions in plants. New Phytol., 221(3), 1197–1214. https://doi.org/10.1111/nph.15488
Sobariu, D.L., Fertu, D.I.T., Diaconu, M., Pavel, L.V., Hlihor, R.M., Dragoi, E.N. & Gavrilescu, M. (2017). Rhizobacteria and plant symbiosis in heavy metal uptake and its implications for soil bioremediation. New Biotech., 39, 125-134. https://doi.org/10.1016/j.nbt.2016.09.002
Somerville, C., Bauer, S., Brininstool, G., Facette, M., Hamann, T., Milne, J., Osborne, E., Paredez, A., Persson, S., Raab, T., Vorwerk, S. & Youngs, H. (2004). Toward a systems approach to understanding plant cell walls. Science, 306(5705), 2206–2211. DOI: 10.1126/ science.1102765
Song, W.Y., Mendozacozatl, D.G., Lee, Y., Schroeder, J.I., AHN, S.N., Lee, H.S. & Martinoia, E. (2014). Phytochelatin–metal (loid) transport into vacuoles shows different substrate preferences in barley and Arabidopsis. Plant Cell Env., 37(5), 1192-1201.https://doi.org/ 10.1111/ pce.12227
Srivastava, S. & Thakur, I.S. (2012). Biosorption and biotransformation of chromium by Serratia sp. isolated from tannery effluent. Env. Technol., 33(1), 113–122. https://doi.org/10.1080/09593330.2011.551842
Sultana, R., Islam, S.M.N., Zaman, M.W. & Uddin, N. (2020). Phytotoxicity of Lead and Chromium on Germination, Seedling Establishment and Metal Uptake by Kenaf and Mesta. Pollution, 6(2), 439-450. DOI: 10.22059/POLL.2020.293211.720
Sytar, O., Kumar, A., Latowski, D., Kuczynska, P., Strzałka, K. & Prasad, M.N.V. (2013). Heavy metal-induced oxidative damage, defence reactions, and detoxification mechanisms in plants. Acta Physiol. Plant., 35(4), 985–999. https://doi.org/10.1007/s11738-012-1169-6
Taiz, L. & Zeiger, E. (2002). Solute transport. In: Plant Physiology. pp 87-99. Sinauer Associates. https://doi.org/10.1007/s11104-013-1589-0
Tangahu, B.V., Abdullah, S.R.S., Basri, H., Idris, M., Anuar, N. & Mukhlisin, M. (2011). A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int. J. Chem. Engg., 2011: 1-31. https://doi.org/10.1155/2011/939161
Teixeira, J., Ferraz, P., Almeida, A., Verde, N. & Fidalgo, F. (2013). Metallothionein multigene family expression is differentially affected by Cr (III) and (VI) in Solanum nigrum L. plants. Food Energy Sec., 2(2), 130-140. doi: 10.1002/fes3.26
Tiwari, K.K., Dwivedi, S., Singh, N.K., Rai, U.N. & Tripathi, R.D. (2009). Chromium (VI) induced phytotoxicity and oxidative stress in pea (Pisum sativum L.): biochemical changes and translocation of essential nutrients. J. Environ. Biol., 30(3), 389–394.
Tomas, M., Pagani, M.A., Andreo, C.S., Capdevila, M., Atrian, S. & Bofill, R. (2015). Sunflower metallothionein family characterisation. Study of the Zn (II)- and Cd (II)-binding abilities of the HaMT1 and HaMT2 isoforms. J. Inorg. Biochem., 148, 35-48. https://doi.org/10.1016/j.jinorgbio.2015.02.016
Tseng, C.H., Lee, I.H. & Chen, Y.C. (2019). Evaluation of hexavalent chromium concentration in water and its health risk with a system dynamics model. Sci. Total Environ., 669, 103–111. https://doi.org/10.1016/j.scitotenv.2019.03.103
Tucker, M.R. & Koltunow, A.M. (2014). Traffic monitors at the cell periphery: the role of cell walls during early female reproductive cell differentiation in plants. Curr. Opin. Plant Biol., 17, 137–145. https://doi.org/10.1016/j.pbi.2013.11.015
Turkan, I., Uzilday, B., Dietz, K.J., Brautigam, A. & Ozgur, R. (2018). Reactive oxygen species and redox regulation in mesophyll and bundle sheath cells of C4 plants. J. Exp. Bot., 69(14), 3321–3331. https://doi.org/10.1093/jxb/ery064
Van Breusegem, F., Bailey-Serres, J. & Mittler, R. (2008). Unraveling the tapestry of networks involving reactive oxygen species in plants. Plant Physiol., 147(3), 978–984. https://doi.org/10.1104/pp.108.122325
Van der Ent, A. & Reeves, R.D. (2015). Foliar metal accumulation in plants from copper-rich ultramafic outcrops: case studies from Malaysia and Brazil. Plant Soil, 389 (1–2), 401–418. https://doi.org/10.1007/s11104-015-2385-9
Verkleij, J.A.C., Sneller, F.E.C. & Schat, H. (2003). Metallothioneins and phytochelatins: ecophysiological aspects, In: Sulphur in Plants, 163–176. https://doi.org/10.1007/ 978-94-017-0289-8_9
Viti, C., Marchi, E., Decorosi, F. & Giovannetti, L. (2014). Molecular mechanisms of Cr (VI) resistance in bacteria and fungi. FEMS Microbiol. Rev., 38(4), 633-659. https://doi.org/ 10.1111/1574-6976.12051
Vuletic, M., Hadsi-Taskovic Sukalovic, V., Markovic, K., Kravic, N., Vucinic, Z. & Maksimovic, V. (2014). Differential response of antioxidative systems of maize roots cell walls to osmotic and heavy metal stress. Plant Biol., 16(1), 88–96. https://doi.org/10.1111/ plb.12017
Wakeel, A., Xu, M. & Gan, Y. (2020) Chromium-induced reactive oxygen species accumulation by altering the enzymatic antioxidant system and associated cytotoxic, genotoxic, ultrastructural, and photosynthetic changes in plants. Int. J. Mol. Sci., 21(3), 728. https://doi.org/10.3390/ijms21030728
Wang, J., Fen, X., Anderson, C.W.N., Xing, Y. & Shang, L. (2012). Remediation of mercury contaminated sites–A review. J. Hazard. Mater., 221-222: 1–18. https://doi.org/10.1016/ j.jhazmat.2012.04.035
Wani, P.A., Khan, M.S. & Zaidi, A. (2008). Effect of heavy metal toxicity on growth, symbiosis, seed yield and metal uptake in pea grown in metal amended soil. Bull. Environ. Contam. Toxicol., 81(2), 152–158. https://doi.org/10.1007/s00128-008-9383-z
Waszczak, C., Carmody, M. & Kangasjärvi, J. (2018). Reactive oxygen species in plant signaling. Ann. Rev. Plant Biol., 69, 209-236. https://doi.org/10.1146/annurev-arplant-042817- 040322
Wei, L., Wang, K., Noguera, D.R., Jiang, J., Oyserman, B., Zhao, N. & Cui, F. (2016). Transformation and speciation of typical heavy metals in soil aquifer treatment system during long time recharging with secondary effluent: Depth distribution and combin-ation. Chemosphere, 165, 100-109. https://doi.org/10.1016/ j.chemosphere.2016.09.027
Wong, H.L., Sakamoto, T., Kawasaki, T., Umemura, K. & Shimamoto, K. (2004). Down-regulation of metallothionein, a reactive oxygen scavenger, by the small GTPase OsRac1 in rice. Plant Physiol., 135, 1447–1456. https://doi.org/10.1104/pp.103.036384
Xia, X., Wu, S., Li, L., Xu, B. & Wang, G. (2018). The Cytochrome bd complex is essential for chromate and sulfide resistance and is regulated by a GbsR-type regulator, CydE, in Alishewanella sp. WH16-1. Front. Microbiol., 9, 1849. https://doi.org/10.3389/ fmicb.2018.01849
Xia, Y., Qi, Y., Yuan, Y., Wang, G., Cui, J., Chen, Y. & Shen, Z. (2012). Overexpression of Elsholtzia haichowensis metallothionein 1 (EhMT1) in tobacco plants enhances copper tolerance and accumulation in root cytoplasm and decreases hydrogen peroxide production. J. Hazard. Mater., 233, 65-71. https://doi.org/10.1016/j.jhazmat.2012.06.047
Xie, X., He, Z., Chen, N., Tang, Z., Wang, Q. & Cai, Y. (2019). The roles of environmental factors in regulation of oxidative stress in plant. BioMed Res. Int., 9732325. https://doi.org/10.1155/ 2019/9732325
Yadav, S. (2010). Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. South Afric. J. Bot., 76(2), 167–179. https://doi.org/10.1016/j.sajb.2009.10.007
Yang, J., Wang, Y., Liu, G., Yang, C. & Li, C. (2011). Tamarix hispida metallothionein-like ThMT3, a reactive oxygen species scavenger, increases tolerance against Cd2+, Zn2+, Cu2+, and NaCl in transgenic yeast. Mol. Biol. Rep., 38(3), 1567–1574. https://doi.org/10.1007/s11033-010-0265-1
Yang, Z. & Chu, C. (2011). Towards understanding plant response to heavy metal stress. In Abiotic Stress in Plants—Mechanisms and Adaptations 59–78. DOI: 10.5772/24204
Yildiz, M., Terzi, H. & Bingul, N. (2013). Protective role of hydrogen peroxide pre-treatment on defence systems and BnMP1 gene expression in Cr (VI)-stressed canola seedlings. Ecotoxicol., 22(8), 1303–1312. https://doi.org/10.1007/s10646-013-1117-2
Yilmaz, S.H., Kaplan, M., Temizgul, R. & Yilmaz, S. (2017). Antioxidant enzyme response of sorghum plant upon exposure to Aluminium, Cr and Lead heavy metals. Turk. J. Biochem., 42(4), 503-512. https://doi.org/10.1515/tjb-2016-0112
You, S.H., Zhang, X.H., Liu, J., Zhu, Y.N. & Gu, C. (2014). Feasibility of constructed wetland planted with Leersia hexandra Swartz for removing Cr, Cu and Ni from electroplating wastewater. Environ. Technol., 35, 187-194. https://doi.org/10.1080/09593330.2013.822006
Yu, X.Z., Gu, J.D. & Xing, L.Q. (2008). Differences in uptake and translocation of hexavalent and trivalent chromium by two species of willows. Ecotoxicol., 17(8), 747-755. https://doi.org/10.1007/s10646-008-0224-y
Yu, X.Z., Lin, Y.J. & Zhang, Q. (2019). Metallothioneins enhance chromium detoxification through scavenging ROS and stimulating metal chelation in Oryza sativa. Chemosphere, 220, 300-313. https://doi.org/10.1016/j.chemosphere.2018.12.119
Yu, X.Z., Lu, C.J. & Li, Y.H. (2018). Role of cytochrome c in modulating chromium-induced oxidative stress in Oryza sativa. Environ.l Sci. Pollut. Res., 25(27), 27639-27649. https://doi.org/10.1007/s11356-018-2817-1
Yurekli, F. & Kucukbay, Z. (2003). Synthesis of phytochelatins in Helianthus annuus is enhanced by cadmium nitrate. Acta Bot. Croat., 62(1), 21–25.
Zagorchev, L., Seal, C.E., Kranner, I.s. & Odjakova, M. (2013). A central role for thiols in plant tolerance to abiotic stress. Int. J. Mol. Sci., 14(4), 7405–7432. https://doi.org/10.3390/ijms14047405
Zaheer, I.E., Ali, S., Rizwan, M., Abbas, Z., Bukhari, S.A.H., Wijaya, L., Alyemeni, M.N. & Ahmad, P. (2019). Zinc-lysine prevents chromium-induced morphological, photosynthetic, and oxidative alterations in spinach irrigated with tannery wastewater. Environ. Sci. Pollut. Res., 26(28), 28951-28961. https://doi.org/10.1007/s11356-019-06084-z
Zaheer, I.E., Ali, S., Rizwan, M., Farid, M., Shakoor, M.B., Gill, R.A., Najeeb, U., Iqbal, N. & Ahmad, R. (2015). Citric acid assisted phytoremediation of copper by Brassica napus L. Ecotoxicol. Environ. Saf., 120, 310–317. https://doi.org/10.1016/j.ecoenv.2015.06.020
Zaheer, I.E., Ali, S., Saleem, M.H., Imran, M., Alnusairi, G.S., Alharbi, B.M. & Soliman, M.H. (2020). Role of iron–lysine on morpho-physiological traits and combating chromium toxicity in rapeseed (Brassica napus L.) plants irrigated with different levels of tannery wastewater. Plant Physiol. Biochem., 155, 70-84. https://doi.org/10.1016/j.plaphy.2020.07.034
Zeng, G., Jia, W., Huang, D., Liang, H., Chao, H., Min, C., Xue, W., Gong, X., Wang, R. & Jiang, D. (2017). Precipitation, adsorption and rhizosphere effect: the mechanisms for sphosphate-induced Pb immobilization in soils-a review. J. Hazard. Mater., 339, 354–367. https://doi.org/10.1016/j.jhazmat.2017.05.038
Zewail, R.M., El-Desoukey, H.S. & Islam, K.R. (2020). Chromium stress alleviation by salicylic acid in Malabar spinach (Basella alba). J. Plant Nutr., 43(9), 1268-1285. https://doi.org/ 10.1080/01904167.2020.1727504
Zhang, H., Guo, Q., Yang, J., Ma, J., Chen, G., Chen, T., Zhu, G., Wang, J., Zhang, G., Wang, X. & Shao, C. (2016). Comparison of chelates for enhancing Ricinus communis L. phytoremediation of Cd and Pb contaminated soil. Ecotoxicol. Environ. Saf., 133, 57–62. https://doi.org/10.1016/j.ecoenv.2016.05.036
Zhao, Y.Y., Hu, C.X., Wang, X., Qing, X.J., Wang, P., Zhang, Y., Zhang, X. & Zhao, X.H. (2019). Selenium alleviated chromium stress in Chinese cabbage (Brassica campestris L.ssp. Pekinensis) by regulating root morphology and metal element uptake. Ecotoxicol. Environ. Saf., 173, 314-321. https://doi.org/10.1016/j.ecoenv.2019.0 1.090
Zou, J., Yu, K., Zhang, Z., Jiang, W. & Liu, D. (2009). Antioxidant response system and chlorophyll fuorescence in chromium (VI)- treated Zea Mays L. seedlings. Acta Biol. Crac. Ser. Bot., 51(1), 23–33.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)