Oviya R Thiruvudainambi S Ramamoorthy V Thamizh vendan R Vellaikumar S.


Alternaria porri causing purple blotch disease of onion is a destructive phytopathogen which causes severe loss in productivity. The present study aimed to unravel the antagonistic potential and efficacy of volatile organic compounds produced by various Trichoderma spp. against A. porri causing purple blotch disease of onion through Gas chromatography-mass spectrometry (GCMS) analysis. Ten isolates of Trichoderma species were isolated from the rhizospheric soil of healthy onion plants. Upon paired plate technique, the in vitro efficacy of ten Trichoderma isolates were tested against virulent isolate of Alternaria porri isolated from purple blotch disease infected onion plants. The Trichoderma isolate TIM2 showed 76.29 per cent inhibition on mycelial growth of pathogen. The effective Trichoderma isolate was identified as Trichoderma hamatum through the analysis of the rDNA of internal transcribed spacers (ITS) region and it was subjected to GC-MS analysis.  The result of GCMS analysis indicated the highest peak area and retention time with major antimicrobial bioactive compounds like Tetradecane, 2,6,10-trimethy (20.327), (1.22) and Dodecane, 2-cyclohexyl (20.079), (2.14), Heptadecane (21.222), (9.50), Octadecane (22.379), (3.58), Eicosane, 9-cyclohexyl (22.578), (1.84), 2-Propenoic acid, pentadecyl ester (23.400), (10.37), 2,6,10,14-tetramethyl (23.567), (10.37), Eicosane (27.311), (2.34), Hexadecanoic acid, methyl ester (27.918), (4.43), n-Hexadecanoic acid (29.156), (3.59) and  Tetrapentacontane, 1,54-dibromo (31.906), (3.33). These bioactive compounds identified through GCMS analysis from the crude extracts of Trichoderma hamatum exhibited a stronger antifungal activity against A. porri. Hence the application of T. hamatum for the management of purple blotch disease highly supress growth of the pathogen and reduce the disease incidence.     




Alternaria porri, Trichoderma hamatum, Purple blotch, GC-MS, Volatile organic compounds

Aldakheel, Reem, K., Rehman, S., Almessiere M. A., Khan, F. A., Mohammed A. G., Mostafa, A. & Baykal A.(2020). Bactericidal and in vitro cytotoxicity of moringa oleifera seed extract & its elemental analysis using laser-induced breakdown spectroscopy. Pharmaceuticals, 13 (8):193, https://doi.org/10.3390%2Fph13080193.
Alsultan, Wael, Vadamalai,G., Khairulmazmi, A., Saud, H.M., Al-Sadi, A. M., Rashed, O., Mohd Jaaffar, A. K. & Nasehi A.(2019). Isolation, identification and characterization of endophytic bacteria antagonistic to Phytophthora palmivora causing black pod of cocoa in Malaysia. European Journal of Plant Pathology, 155 (4):1077-1091, https://doi.org/10.1007/s10658-019-01834-8.
Alpona, Roy, Islam, A. F. S. M. & Tabassum R.(2016). Morphological features and yield evaluation of onion (Allium cepa L.) genotypes in acid soil. International Journal of Plant Breeding and Genetics, 10 (3):116-124.
Bharose, A.A. & Gajera H.P.( 2018). Antifungal activity and metabolites study of Bacillus strain against aflatoxin producing Aspergillus. J Appl Microbiol Biochem, 2 (2):8, https://doi.org/10.21767/2576-1412.100024.
Chen, Hua, J., Xiang, W., Cao, K.Z., Lu, X., Yao,S.C., Hung,D., Huang, R.S. & Li L.B.(2020). Characterization of volatile organic compounds emitted from endophytic Burkholderia cenocepacia ETR-B22 by SPME-GC-MS and their inhibitory activity against various plant fungal pathogens. Molecules, 25 (17):3765, https://doi.org/10.3390/molecules25173765.
Chowdhury, Kumar, S., Majumdar, S. & Mandal V.(2020). Application of Bacillus sp. LBF-01 in Capsicum annuum plant reduces the fungicide use against Fusarium oxysporum. Biocatalysis and Agricultural Biotechnology, 27:101714, https://doi.org/10.1016/j.bcab.2020.101714.
de Brito, Maria, V., Fonseca, W. L., Mafezoli, J., Barbosa, F. G., Nunes. F. M., Mattos M.C.D., João EA dos Santos, Francisca, S.A., Vieira,R.F. & Hilton C.R.(2022). Biologically Active Volatile Organic Compounds (VOCs) Produced by Rhizospheric Actinobacteria Strains Inhibit the Growth of the Phytopathogen Colletotrichum musae. Journal of the brazilian chemical society, http://dx.doi.org/10.2 1577/0103-5053.20220037.
Heimpel, George, E. & Nicholas J. M.(2017). Biological control: Cambridge University Press.
Jayapradha, C. & Yesu R.(2017). A review of eco-friendly management of Alternaria species. Indian Association of Hill Farming, 0970-6429.
Jishma, P., Hussain, N., Chellappan, R., Rajendran, R., Mathew, J. & Radhakrishnan E.K.(2017). Strain‐specific variation in plant growth promoting volatile organic compounds production by five different Pseudomonas spp. as confirmed by response of Vigna radiata seedlings. Journal of applied microbiology,123 (1):204-216, https://doi.org/10.1111/jam.13474
Mahajan, Vijay, Benke, A., Gupta, A. J. & Singh M.(2017). Garlic (Allium sativum L.) research in India. Progressive Horticulture, 49 (2):101-112, http://dx.doi.org/10.5958/2 249-5258.2017.00024.0
Masiulionis, Virginia, E. & Pagnocca F. C.(2020). In vitro study of volatile organic compounds produced by the mutualistic fungus of leaf-cutter ants and the antagonist Escovopsis. Fungal Ecology, 48:100986, http://dx.doi.org/10.1016/j.funeco.2020.100986.
Meena, Mukesh, Zehra, A., Dubey, M. K., Aamir, M., Gupta, V. K. & Ram S. U.(2016). Comparative evaluation of biochemical changes in tomato (Lycopersicon esculentum Mill.) infected by Alternaria alternata and its toxic metabolites (TeA, AOH, and AME). Frontiers in plant science, 7:1408, https://doi.org/10.3389/fpls.2016.01408
Marzoqi, A., Hussein, A., Hameed, I.H. & Salah A. I.(2015). Analysis of bioactive chemical components of two medicinal plants (Coriandrum sativum and Melia azedarach) leaves using gas chromatography-mass spectrometry (GC-MS). African Journal of Biotechnology, 14 (40), 2812-2830, https://doi.org/10.5897/AJB2015.14956.
Narayan, Shalini, Lata, K. P. & Kotasthane,A.S.(2006). Genetic relatedness among Trichoderma isolates inhibiting a pathogenic fungi Rhizoctonia solani. African Journal of Biotechnology, 5 (8):580-584, ISSN 1684–5315.
Pucot, jayson, R., Dapar, M. L. G. & Demayo C.G.(2021). Qualitative analysis of the antimicrobial, phytochemical and GC-MS profile of the stem ethanolic extract from Anodendron borneense (King and Gamble). J Complement Med Res, 12 (2):231-239, http://dx.doi.org/10.5455/jcmr2021.12.02.27.
Rajaofera, Nelly, M. J., Wang, Y., Dahar, G. Y., Jin, P., Fan, L., Xu, Wenbo Liu, L. & Miao W.(2019). Volatile organic compounds of Bacillus atrophaeus HAB-5 inhibit the growth of Colletotrichum gloeosporioides. Pesticide biochemistry and physiology, 156:170-176, https://doi.org/10.1016/j.pestbp.2019.02.019.
Rao, Yuxin, Zeng, L., Jiang, H., Mei, L. & Wang Y.(2022). Trichoderma atroviride LZ42 releases volatile organic compounds promoting plant growth and suppressing Fusarium wilt disease in tomato seedlings. BMC microbiology, 22 (1):1-12, https://doi.org/10.1186/s12866-022-02511-3.
Ravichandran, Kavitha, Ahmed, A. R., Knorr, D. & Smetanska I.(2012). The effect of different processing methods on phenolic acid content and antioxidant activity of red beet. Food Research International. 48 (1):16-20, http://dx.doi.org/10.1016/j.foodres.2012.01.011.
Resti, Z. & Liswarni Y.(2021). Endophytic bacterial consortia as biocontrol of purple blotch and plant growth promoters of shallots. In IOP Conference Series: Earth and Environmental Science, (Vol. 741, No. 1, p. 012009). IOP Publishing.
Samy, Selim, A., Mohamed, H. A., Mona, S. M. & Mona F.W.(2013). Antibacterial activities, chemical constitutes and acute toxicity of Egyptian Origanum majorana L., Peganum harmala L. and Salvia officinalis L. essential oils. African journal of pharmacy and pharmacology, 7 (13):725-735, http://dx.doi.org/10.5897/AJPP2013.3518.
Sangeetha, Chinnusamy, Krishnamoorthy, A. S., Kumar, N. K. & Pravin I. A.(2018). Effect of headspace and trapped volatile organic compounds (vocs) of the chinese caterpillar mushroom, Ophiocordyceps sinensis (ascomycetes), against soil-borne plant pathogens. International Journal of Medicinal Mushrooms, 20 (9), https://doi.org/10.1615/intjmedmushrooms.2018027311.
Sheoran, Neelam, Nadakkakath, A. V., Munjal, V., Kundu, A., Subaharan, K., Venugopal, V., Rajamma, S., Eapen, S. J. & Kumar A.(2015). Genetic analysis of plant endophytic Pseudomonas putida BP25 and chemo-profiling of its antimicrobial volatile organic compounds. Microbiological research, 173:66-78, https://www.sciencedirect.com/science/article/pii/S0944501315000233.
Siddiquee, Shafiquzzaman, Cheong, B. E., Taslima, K., Kausar, H. & Hasan M.(2012). Separation and identification of volatile compounds from liquid cultures of Trichoderma harzianum by GC-MS using three different capillary columns. Journal of chromatographic science, 50 (4):358-367, https://doi.org/10.1093/chromsci/bms012.
Tomah, Athafah, A., Alamer, I. S., Li, B. & Zhang Z. L.(2020). A new species of Trichoderma and gliotoxin role: A new observation in enhancing biocontrol potential of T. virens against Phytophthora capsici on chili pepper. Biological Control, 145:104261, https://doi.org/10.1016/j.biocontrol.2020.104261.
Vinodkumar, S., Nakkeeran, S., Renukadevi, P. & Malathi V. G.(2017). Biocontrol potentials of antimicrobial peptide producing Bacillus species: multifaceted antagonists for the management of stem rot of carnation caused by Sclerotinia sclerotiorum. Frontiers in microbiology, 8:446, https://doi.org/10.3389/fmicb.2017.00446.
Yassin, Taha, M., Mostafa, A. F., Al-Askar, A. A., Sayed, S.RM. & Rady A.M.(2021). Antagonistic activity of Trichoderma harzianum and Trichoderma viride strains against some fusarial pathogens causing stalk rot disease of maize, in vitro. Journal of King Saud University-Science, 33 (3):101363, https://doi.org/10.1016/j.jksus.202 1.10 1363.
Zohair, Moustafa, M., Ahmed, A., Sadik, M. W., Hamed, E. R. & SedikM. Z.(2018). Promising biocontrol agents isolated from medicinal plants rhizosphere against root-rot fungi. Biocatalysis and Agricultural Biotechnology, 15:11-18, https://doi.org/10.1016/j.bcab.2018.04.015.
Citation Format
How to Cite
Antagonistic potential of Trichoderma hamatum against Alternaria porri causing purple blotch disease of onion through Gas chromatography-mass spectrometry (GCMS) analysis. (2022). Journal of Applied and Natural Science, 14(3), 1031-1038. https://doi.org/10.31018/jans.v14i3.3814
More Citation Formats:
Research Articles

How to Cite

Antagonistic potential of Trichoderma hamatum against Alternaria porri causing purple blotch disease of onion through Gas chromatography-mass spectrometry (GCMS) analysis. (2022). Journal of Applied and Natural Science, 14(3), 1031-1038. https://doi.org/10.31018/jans.v14i3.3814