Article Main

Nikita Gupta Sonia Morya

Abstract

Quinoa (Chenopodium quinoa), sorghum (Sorghum bicolor) and flaxseed (Linum usitassimum L.) are grains and seeds popularly known for their nutritional values. This  review aimed to discuss the nutritional profile of these grains and seeds, their bioactive compounds and how those compounds help to prevent chronic diseases. These crops were selected for this study as they are all free of gluten; they are a rich source of protein, and they all have a low glycemic index (GI) i.e. they do not spike the blood sugar level, which makes them a good choice for people with diabetes and celiac disease. During the study, it was found that some or all of the bioactive compounds like phenolic acids, flavonoids, saponins, phytosterols, tocopherol, tannins, betalains, stillbenoids, polycosanols, alpha-linoleic acid, and lignans have anti- cancerous, anti- diabetic, anti-hypertensive and cardiovasculareffects on the body.  Quinoa posses’ bioactive compounds like quercetin, kaempferol, Betacyanins, betalains and tocopherol, that have biological functions such as anti-hypertensive, anti-viral, anti-oxidant, anti-cancerous, anti-diabetic, anti-allergic, anti-thrombosis, and anti-atherosclerosis effects on the body. Sorghum contains trans-resveratrol, caffeic acid, gallic acid, campesterol, stigmasterol and gallotannins, which helps prevent lung, breast and prostate cancer, prevents type-2-diabetes, and has neuroprotective effect. Flaxseed bioactives like Alpha-linolenic acid (ALA), lignans and cyanogenic glycosides have Immunomodulatory, anti-fibrosis, anti-mutagenic and anti-obesity effects. Since the world is moving towards a healthy lifestyle, grains and seeds are a good source of nutritious foods.

Article Details

Article Details

Keywords

Bioactive compounds, Biological functions, Chronic diseases, Glycemic index, Good health and well-being, Sustainable Development Goals

References
Abderrahim, F., Huanatico, E., Segura, R., Arribas, S., Gonzalez, M. C.& Condezo-Hoyos, L. (2015). Physical features, phenolic compounds, betalains and total antioxidant capacity of coloured quinoa seeds (Chenopodium quinoa Willd.) from Peruvian Altiplano. Food Chemistry, 183, 83-90.https://doi.org/10.1016/j.foodchem.2015.03.029
Adebo, O. A. (2020). African sorghum-based fermented foods: past, current and future prospects. Nutrients, 12(4), 1111.https://doi.org/10.3390/nu12041111
Adiamo, O. Q., Fawale, O. S. & Olawoye, B. (2018). Recent trends in the formulation of gluten-free sorghum products. Journal of Culinary Science & Technology, 16(4), 311-325.
Ahumada, A., Ortega, A., Chito, D. & Benítez, R. (2016). Saponinas de quinua (Chenopodium quinoa Willd.): un subproducto con alto potencialbiológico. RevistaColombiana de CienciasQuímico-Farmacéuticas, 45(3), 438-469.
Akinwumi, B. C., Bordun, K. A. M. & Anderson, H. D. (2018). Biological activities of stilbenoids. International Journal of Molecular Sciences, 19(3), 792.https://doi.org/10.3390/ijms19030792
Alam, M. A. (2019). Anti-hypertensive effect of cereal antioxidant ferulic acid and its mechanism of action. Frontiers in Nutrition, 6, 121.https://doi.org/10.3389/fnut.2019.00121
Al-Ishaq, R. K., Abotaleb, M., Kubatka, P., Kajo, K. & Büsselberg, D. (2019). Flavonoids and their anti-diabetic effects: cellular mechanisms and effects to improve blood sugar levels. Biomolecules, 9(9), 430.https://doi.org/10.3390/biom9090430
Anantharaju, P. G., Gowda, P. C., Vimalambike, M. G. &Madhunapantula, S. V. (2016). An overview on the role of dietary phenolics for the treatment of cancers. Nutrition Journal, 15(1), 1-16.https://doi.org/10.1186/s12937-016-0217-2
Anjum, N., Sheikh, M. A., Saini, C. S., Hameed, F., Sharma, H. K. & Bhat, A. (2022). Cyanogenic Glycosides. In Handbook of Plant and Animal Toxins in Food (pp. 191-202). CRC Press.
Appenteng, M. K., Krueger, R., Johnson, M. C., Ingold, H., Bell, R., Thomas, A. L. & Greenlief, C. M. (2021). Cyanogenic glycoside analysis in American elderberry. Molecules, 26(5), 1384.
Babu, S., & Jayaraman, S. (2020). An update on β-sitosterol: A potential herbal nutraceutical for diabetic management. Biomedicine & Pharmacotherapy, 131, 110702. https://doi.org/10.1016/j.biopha.2020.110702
Balakrishnan, G., & Schneider, R. G. (2020). Quinoa flavonoids and their bioaccessibility during in vitro gastrointestinal digestion. Journal of Cereal Science, 95, 103070.https://doi.org/10.1016/j.jcs.2020.103070
Balić, A., Vlašić, D., Žužul, K., Marinović, B. & Bukvić Mokos, Z. (2020). Omega-3 versus omega-6 polyunsaturated fatty acids in the prevention and treatment of inflammatory skin diseases. International Journal of Molecular Sciences, 21(3), 741.
Bastidas, E. G., Roura, R., Rizzolo, D. A. D., Massanés, T. & Gomis, R. (2016). Quinoa (Chenopodium quinoa Willd), from nutritional value to potential health benefits: an integrative review. Journal of Nutrition & Food Sciences,6,3.
Batey, I. (2017). The diversity of uses for cereal grains. In Cereal Grains, 41-53. Woodhead Publishing.
Batiha, G. E. S., Beshbishy, A. M., Ikram, M., Mulla, Z. S., El-Hack, M. E. A., Taha, A. E. & Elewa, Y. H. A. (2020). The pharmacological activity, biochemical properties, and pharmacokinetics of the major natural polyphenolic flavonoid: Quercetin. Foods, 9(3), 374.https://doi.org/10.3390/foods9030374
Bekhit, A. E. D. A., Shavandi, A., Jodjaja, T., Birch, J., Teh, S., Ahmed, I. A. M. & Bekhit, A. A. (2018). Flaxseed: Composition, detoxification, utilization, and opportunities. Biocatalysis and Agricultural Biotechnology, 13, 129-152.https://doi.org/10.1016/j.bcab.2017.11.017
Bhuva, V., Morya, S. & Borah, A. (2021). A review on meat analogue: is this time to see the algal proteins as a sustainable substitute for the meat proteins. Pharma Innovation Journal, 10(5), 1160-1168.
Birková, A., Hubková, B., Bolerázska, B., Mareková, M. & Čižmárová, B. (2020). Caffeic acid: a brief overview of its presence, metabolism, and bioactivity. Bioactive Compounds in Health and Disease, 3(4), 74-81.https://doi.org/10.31989/bchd.v3i4.692
Chandra, A. K., Chandora, R., Sood, S. & Malhotra, N. (2021). Global production, demand, and supply. In Millets and Pseudo Cereals (pp. 7-18). Woodhead Publishing.
Chishty, S. & Bissu, M. (2016). Health benefits and nutritional value of flaxseed-a review. Indian Journal of Applied Research, 6(1), 243-245.
Dakhili, S., Abdolalizadeh, L., Hosseini, S. M., Shojaee-Aliabadi, S. & Mirmoghtadaie, L. (2019). Quinoa protein: Composition, structure and functional properties. Food Chemistry, 299, 125161.
Darband, S. G., Kaviani, M., Yousefi, B., Sadighparvar, S., Pakdel, F. G., Attari, J. A. & Majidinia, M. (2018). Quercetin: A functional dietary flavonoid with potential chemopreventive properties in colorectal cancer. Journal of Cellular Physiology, 233(9), 6544-6560.https://doi.org/10.1002/jcp.26595
Cardoso, De Morais, L., Pinheiro, S. S., Martino, H. S. D. & Pinheiro-Sant'Ana, H. M. (2017). Sorghum (Sorghum bicolor L.): Nutrients, bioactive compounds, and potential impact on human health. Critical Reviews in Food Science and Nutrition, 57(2), 372-390.https://doi.org/10.1080/10408398.2014.887057
De Oliveira K. G., Queiroz V. A. V., de Almeida Carlos L., de Morais Cardoso L., Pinheiro-Sant’Ana H. M., Anunciação P. C. & Barros F. (2017). Effect of the storage time and temperature on phenolic compounds of sorghum grain and flour. Food Chem. 216, 390-398.https://doi.org/10.1016/j.foodchem.2016.08.047
De Silva, S. F. & Alcorn, J. (2019). Flaxseed lignans as important dietary polyphenols for cancer prevention and treatment: Chemistry, pharmacokinetics, and molecular targets. Pharmaceuticals, 12(2), 68.  https://doi.org/10.3390/ph12020068
Delgado, A. M., Issaoui, M. & Chammem, N. (2019). Analysis of main and healthy phenolic compounds in foods. Journal of AOAC International, 102(5), 1356-1364.
DeLuca, J. A., Garcia-Villatoro, E. L. & Allred, C. D. (2018). Flaxseed bioactive compounds and colorectal cancer prevention. Current Oncology Reports, 20(8), 1-8.
Deng, Q., Li, X. X., Fang, Y., Chen, X. & Xue, J. (2020). Therapeutic potential of quercetin as an antiatherosclerotic agent in atherosclerotic cardiovascular disease: a review. Evidence-Based Complementary and Alternative Medicine, 2020.https://doi.org/10.1155/2020/5926381
Devi, S., Kumar, V., Singh, S. K., Dubey, A. K. & Kim, J. J. (2021). Flavonoids: Potential candidates for the treatment of neurodegenerative disorders. Biomedicines, 9(2), 99.
Dludla, P. V., Nkambule, B. B., Jack, B., Mkandla, Z., Mutize, T., Silvestri, S. & Mazibuko-Mbeje, S. E. (2018). Inflammation and oxidative stress in an obese state and the protective effects of gallic acid. Nutrients, 11(1), 23.https://doi.org/10.3390/nu11010023
Duodu, K. G. (2019). Assaying sorghum nutritional quality. In Sorghum (pp. 87-108). Humana Press, New York, NY.
Esatbeyoglu, T., Wagner, A. E., SchiniKerth, V. B. & Rimbach, G. (2015). Betanin—A food colorant with biological activity. Molecular Nutrition & Food Research, 59(1), 36-47.
Esposito, T., Sansone, F., Franceschelli, S., Del Gaudio, P., Picerno, P., Aquino, R. P. & Mencherini, T. (2017). Hazelnut (Corylus avellana L.) shells extract: phenolic composition, antioxidant effect and cytotoxic activity on human cancer cell lines. International Journal of Molecular Sciences, 18(2), 392.
Fernández-López J., Viuda-Martos M., Sayas-Barberá M. E., Navarro-Rodríguez de Vera C., Lucas-González R., Roldán-Verdú A. & Pérez-Alvarez J. A. (2020). Chia, Quinoa, and Their Coproducts as Potential Antioxidants for the Meat Industry. Plants, 9(10), 1359https://doi.org/10.3390/plants9101359
Galiniak, S., Aebisher, D. & Bartusik-Aebisher, D. (2019). Health benefits of resveratrol administration. Acta Biochimica Polonica, 66(1),13-21.https://doi.org/10.18388/abp.2018_2749
Goszcz, K., Duthie, G. G., Stewart, D., Leslie, S. J. & Megson, I. L. (2017). Bioactive polyphenols and cardiovascular disease: chemical antagonists, pharmacological agents or xenobiotics that drive an adaptive response?. British Journal of Pharmacology, 174(11), 1209-1225.https://doi.org/10.1111/bph.13708
Gowd, V., Karim, N., Shishir, M. R. I., Xie, L. & Chen, W. (2019). Dietary polyphenols to combat the metabolic diseases via altering gut microbiota. Trends in Food Science & Technology, 93, 81-93.https://doi.org/10.1016/j.tifs.2019.09.005
Goyal, A., Sharma, V., Upadhyay, N., Gill, S. & Sihag, M. (2014). Flax and flaxseed oil: an ancient medicine & modern functional food. Journal of Food Science and Technology, 51(9), 1633-1653.
Goyal, A., Patel, A., Sihag, M. K., Shah, N. & Tanwar, B. (2018). Therapeutic potential of flaxseed. In Therapeutic, Probiotic, and Unconventional Foods, 255-274. Academic Press.DOI: https://doi.org/10.1016/B978-0-12-814625-5.00013-3
Gupta, E. (2020). β-Sitosterol: Predominant phytosterol of therapeutic potential. Innovations in Food Technology, 465-477.https://doi.org/10.1007/978-981-15-6121-4_32
Hao, L., Wan, Y., Xiao, J., Tang, Q., Deng, H. & Chen, L. (2017). A study of Sirt1 regulation and the effect of resveratrol on synoviocyte invasion and associated joint destruction in rheumatoid arthritis. Molecular Medicine Reports, 16(4), 5099-5106.https://doi.org/10.3892/mmr.2017.7299
Hassan, S. T. (2020). Brassicasterol with dual anti-infective properties against HSV-1 and Mycobacterium tuberculosis, and cardiovascular protective effect: nonclinical in vitro and in silico assessments. Biomedicines, 8(5), 132.https:doi.org/10.3390/biomedicines8050132
Hernández-Ledesma, B. (2019). Quinoa (Chenopodium quinoa Willd.) as source of bioactive compounds: A review. Bioactive Compounds in Health and Disease, 2(3), 27-47. https://doi/org/10.31989/bchd.v2i3.556
Imran, M., Rauf, A., Shah, Z. A., Saeed, F., Imran, A., Arshad, M. U. & Mubarak, M. S. (2019). Chemopreventive and therapeutic effect of the dietary flavonoid kaempferol: A comprehensive review. Phytotherapy Research, 33(2), 263-275.https://doi.org/10.1002/ptr.6227
Jiang, Y., Zhang, H., Qi, X. & Wu, G. (2020). Structural characterization and antioxidant activity of condensed tannins fractionated from sorghum grain. Journal of Cereal Science, 92, 102918.https://doi.org/10.1016/j.jcs.2020.10 2918
Joye, I. (2019). Protein digestibility of cereal products. Foods, 8(6), 199.
Kahkeshani, N., Farzaei, F., Fotouhi, M., Alavi, S. S., Bahramsoltani, R., Naseri, R. & Bishayee, A. (2019). Pharmacological effects of gallic acid in health and diseases: A mechanistic review. Iranian journal of Basic Medical Sciences, 22(3), 225.https://doi.org/10.22038/ijbms.2019.32806.7897
Kajla, P., Sharma, A. & Sood, D. R. (2015). Flaxseed—a potential functional food source. Journal of Food Science and Technology, 52(4), 1857-1871.
Khan, J., Deb, P. K., Priya, S., Medina, K. D., Devi, R., Walode, S. G. & Rudrapal, M. (2021). Dietary flavonoids: Cardioprotective potential with antioxidant effects and their pharmacokinetic, toxicological and therapeutic concerns. Molecules, 26(13), 4021.https://doi.org/10.3390/molecules26134021
Kikuchi, H., Yuan, B., Hu, X. & Okazaki, M. (2019). Chemopreventive and anticancer activity of flavonoids and its possibility for clinical use by combining with conventional chemotherapeutic agents. American Journal of Cancer Research, 9(8), 1517.
Kotecka-Majchrzak, K., Sumara, A., Fornal, E. & Montowska, M. (2020). Oilseed proteins–Properties and application as a food ingredient. Trends in Food Science & Technology, 106, 160-170.https://doi.org/10.1016/j.tifs.2020.10.004
Kouamé, K. J. E. P., Bora, A. F. M., Li, X., Sun, Y. & Liu, L. (2021). Novel trends and opportunities for microencapsulation of flaxseed oil in foods: A review. Journal of Functional Foods, 87, 104812.https://doi.org/10.1016/j.jff.2021.104812
Kurniawan, I. & Zahra, H. (2021). Gallotannins; Biosynthesis, Structure Activity Relationship, Anti-inflammatory and Antibacterial Activity. Current Biochemistry, 8(1), 1-16.
Kuršvietienė, L., Stanevičienė, I., Mongirdienė, A. & Bernatonienė, J. (2016). Multiplicity of effects and health benefits of resveratrol. Medicina, 52(3), 148-155.https://doi.org/10.1016/j.medici.2016.03.003
Li, Y., Zhang, T. & Chen, G. Y. (2018). Flavonoids and colorectal cancer prevention. Antioxidants, 7(12), 187.https://doi.org/10.3390/antiox7120187
Li, Z., Zhao, X., Zhang, X. & Liu, H. (2021). Bioactive Compounds and Biological Activities of Sorghum Grains. Foods, 10(11), 2868.https://doi.org/10.3390/foods10112868
Links M. R., Taylor J., Kruger M. C. & Taylor J. R. (2015). Sorghum condensed tannins encapsulated in kafirinmicroparticles as a nutraceutical for inhibition of amylases during digestion to attenuate hyperglycaemia. Journal of Functional Foods, 12, 55-63.
Liu, J., He, Z., Ma, N. & Chen, Z. Y. (2019). Beneficial effects of dietary polyphenols on high-fat diet-induced obesity linking with modulation of gut microbiota. Journal of Agricultural and Food Chemistry, 68(1), 33-47.https://doi.org/10.1021/acs.jafc.9b06817
Luo, X., Cui, J., Zhang, H. & Duan, Y. (2018). Subcritical water extraction of polyphenolic compounds from sorghum (Sorghum bicolor L.) bran and their biological activities. Food Chemistry, 262, 14-20.https://doi.org/10.1016/j.foodchem.2018.04.073
Madadi, E., Mazloum-Ravasan, S., Yu, J. S., Ha, J. W., Hamishehkar, H. & Kim, K. H. (2020). Therapeutic application of betalains: A review. Plants, 9(9), 1219.
Maki, K. C. & Phillips, A. K. (2015). Dietary substitutions for refined carbohydrate that show promise for reducing risk of type 2 diabetes in men and women. The Journal of nutrition, 145(1), 159S-163S.
Marmol, I., Sánchez-de-Diego, C., PradillaDieste, A., Cerrada, E. & Rodriguez Yoldi, M. J. (2017). Colorectal carcinoma: a general overview and future perspectives in colorectal cancer. International Journal of Molecular Sciences, 18(1), 197.https://doi.org/10.3390/ijms18010197
Martinez-Villaluenga, C., Peñas, E. & Hernández-Ledesma, B. (2020). Pseudocereal grains: Nutritional value, health benefits and current applications for the development of gluten-free foods. Food and Chemical Toxicology, 137, 111178.https://doi.org/10.1016/j.fct.2020.111 178
Mir, N. A., Riar, C. S. & Singh, S. (2018). Nutritional constituents of pseudo cereals and their potential use in food systems: A review. Trends in Food Science & Technology, 75, 170-180.https://doi.org/10.1016/j.tifs.2018.03.016
Mofokeng, M. A., Shimelis, H., Tongoona, P. & Laing, M. D. (2018). Protein Content and Amino Acid Composition among Selected South African Sorghum Genotypes. Journal of Food Chemistry and Nutrition, 6(1), 01-12. https://doi.org/10.33687/jfcn.006.01.1927
Moreau, R. A., Nyström, L., Whitaker, B. D., Winkler-Moser, J. K., Baer, D. J., Gebauer, S. K. & Hicks, K. B. (2018). Phytosterols and their derivatives: Structural diversity, distribution, metabolism, analysis, and health-promoting uses. Progress in Lipid Research, 70, 35-61.https://doi.org/10.1016/j.plipres.2018.04.001
Morya, S., Chandra, R. & Seelam, B. S. (2017). Microbial characteristics of whey and sorghum based low fat probiotic beverage. International Journal of Chemical Studies, 5(4), 403-406.
Morya, S., Upadhyay, P. & Kumar, P. (2019). Process optimization and quality evaluation of developed water chestnut (Trapabispinosa), flaxseeds, and Sesame seeds nutritive Chikki (Bar). Think India Journal, 22(34), 1280-1292.
Morya, S., Menaa, F., Jiménez-López, C., Lourenço-Lopes, C., BinMowyna, M. N. & Alqahtani, A. (2022). Nutraceutical and Pharmaceutical Behavior of Bioactive Compounds of Miracle Oilseeds: An Overview. Foods, 11(13), 1824.https://doi.org/10.3390/foods11131824
Mota, C., Santos, M., Mauro, R., Samman, N., Matos, A. S., Torres, D. & Castanheira, I. (2016). Protein content and amino acids profile of pseudocereals. Food Chemistry, 193, 55-61.
Motta, C., Castanheira, I., Gonzales, G. B., Delgado, I., Torres, D., Santos, M. & Matos, A. S. (2019). Impact of cooking methods and malting on amino acids content in amaranth, buckwheat and quinoa. Journal of Food Composition and Analysis, 76, 58-65.https://doi.org/10.1016/j.jfca.2018.10.001
Mrduljaš, N., Krešić, G. & Bilušić, T. (2017). Polyphenols: Food sources and health benefits. Functional food-improve health through adequate food, 23-41.
Mroczek, A. (2015). Phytochemistry and bioactivity of triterpene saponins from Amaranthaceae family. Phytochemistry Reviews, 14(4), 577-605. https://doi.o rg/10.1007/s11101-015-9394-4
Muhammad Abdul Kadar, N. N., Ahmad, F., Teoh, S. L. & Yahaya, M. F. (2021). Caffeic acid on metabolic syndrome: a review. Molecules, 26(18), 5490.https://doi.o rg/10.3390/molecules26185490
Naghshi, S., Aune, D., Beyene, J., Mobarak, S., Asadi, M. & Sadeghi, O. (2021). Dietary intake and biomarkers of alpha linolenic acid and risk of all cause, cardiovascular, and cancer mortality: systematic review and dose-response meta-analysis of cohort studies. bmj, 375.https://doi.org/10.1136/bmj.n2213
Natalello, A., Hervás, G., Toral, P. G., Luciano, G., Valenti, B., Mendoza, A. G. & Frutos, P. (2020). Bioactive compounds from pomegranate by-products increase the in vitro ruminal accumulation of potentially health promoting fatty acids. Animal Feed Science and Technology, 259, 114355.https://doi.org/10.1016/j.anifeedsci.2019.114355
Ng, C. Y. & Wang, M. (2021). The functional ingredients of quinoa (Chenopodium quinoa) and physiological effects of consuming quinoa: A review. Food Frontiers, 2(3), 329-356.  https://doi.org/10.1002/fft2.109
Nooshkam, M., Varidi, M. & Verma, D. K. (2020). Functional and biological properties of Maillard conjugates and their potential application in medical and food: A review. Food Research International, 131, 109003.https://doi.org/10.1016/j.foodres.2020.109003
Cruz, Ortíz, R. A., Cárdenas López, J. L., González Aguilar, G. A., Astiazaran Garcia, H., Gorinstein, S., Canett Romero, R. & Robles Sanchez, M. (2015). Influence of sorghum kafirin on serum lipid profile and antioxidant activity in hyperlipidemic rats (in vitro and in vivo studies). BioMed Research International, 2015.
Pathan, S. & Siddiqui, R. A. (2022). Nutritional Composition and Bioactive Components in Quinoa (Chenopodium quinoa Willd.) Greens: A Review. Nutrients, 14(3), 558.  https://doi.org/10.3390/nu14030558
Pirozi, M. R., Borges, J. T., HM, P. S. A., Chaves, J. B. & Coimbra, J. S. (2017). Quinoa: Nutritional, functional, and antinutritional aspects. Critical Reviews in Food Science and Nutrition, 57(8), 1618-1630.https://doi.org/10.1080/10 408398.2014.1001811
Pratiwi, R., Nantasenamat, C., Ruankham, W., Suwanjang, W., Prachayasittikul, V., Prachayasittikul, S. & Phopin, K. (2021). Mechanisms and neuroprotective activities of stigmasterol against oxidative stress-induced neuronal cell death via sirtuin family. Frontiers in Nutrition, 8, 648995.https://doi.org/10.3389/fnut.2021.648995
Queiroz, V. A. V., da Silva Aguiar, A., de Menezes, C. B., de Carvalho, C. W. P., Paiva, C. L., Fonseca, P. C. & da Conceição, R. R. P. (2018). A low calorie and nutritive sorghum powdered drink mix: Influence of tannin on the sensorial and functional properties. Journal of Cereal Science, 79, 43-49.https://doi.org/10.1016/j.jcs.2017.1 0.001
Ramakrishna, R., Sarkar, D. & Shetty, K. (2019). Functional bioactives from barley for human health benefits. In Functional Foods and Biotechnology (pp. 61-85). CRC Press.
Rao, N. K. & Shahid, M. (2016). Quinoa-A promising new crop for the Arabian Peninsula. Journal of Agriculture and Environmental Sciences, 12, 1350-1355.
Rauf, A., Imran, M., Abu-Izneid, T., Patel, S., Pan, X., Naz, S. & Suleria, H. A. R. (2019). Proanthocyanidins: A comprehensive review. Biomedicine & Pharmacotherapy, 116, 108999.
Refolo, M. G., D'Alessandro, R., Malerba, N., Laezza, C., Bifulco, M., Messa, C. & Tutino, V. (2015). Anti proliferative and pro apoptotic effects of flavonoid quercetin are mediated by CB1 receptor in human colon cancer cell lines. Journal of cellular physiology, 230(12), 2973-2980.https://doi.org/10.1002/jcp.25026
Ribas-Agustí, A., Martín-Belloso, O., Soliva-Fortuny, R. &Elez-Martínez, P. (2018). Food processing strategies to enhance phenolic compounds bioaccessibility and bioavailability in plant-based foods. Critical Reviews in Food Science and Nutrition, 58(15), 2531-2548.https://doi.org/10.1080/10408398.2017.1331200
Rodríguez-García, C., Sánchez-Quesada, C., Toledo, E., Delgado-Rodríguez, M. & Gaforio, J.J. (2019). Naturally lignan-rich foods: A dietary tool for health promotion?. Molecules, 24(5), 917.
Sadowska-Bartosz, I. & Bartosz, G. (2021). Biological properties and applications of betalains. Molecules, 26(9), 2520.https://doi.org/10.3390/molecules26092520
Salehi, B., Mishra, A. P., Nigam, M., Sener, B., Kilic, M., Sharifi-Rad, M. & Sharifi-Rad, J. (2018a). Resveratrol: A double-edged sword in health benefits. Biomedicines, 6(3), 91.https://doi.org/10.3390/biomedicines6030091
Salehi, B., Mnayer, D., Özçelik, B., Altin, G., Kasapoğlu, K. N., Daskaya-Dikmen, C. & Sharifi-Rad, J. (2018b). Plants of the genus Lavandula: From farm to pharmacy. Natural Product Communications, 13(10), 1934578 X1801301037.
Schmidt, H. D. O., Rockett, F. C., Pagno, C. H., Possa, J., Assis, R. Q., de Oliveira, V. R. & Rios, A. D. O. (2019). Vitamin and bioactive compound diversity of seven fruit species from south Brazil. Journal of the Science of Food and Agriculture, 99(7), 3307-3317.https://doi.org/10.1002/jsfa.9544
Serna-Saldivar, S. O. & Espinosa-Ramírez, J. (2019). Grain structure and grain chemical composition. In Sorghum and Millets, 85-129. AACC International Press.
Sharifi-Rad, J., Rodrigues, C. F., Sharopov, F., Docea, A. O., Can Karaca, A., Sharifi-Rad, M. & Calina, D. (2020). Diet, lifestyle and cardiovascular diseases: linking pathophysiology to cardioprotective effects of natural bioactive compounds. International Journal of Environmental Research and Public Health, 17(7), 2326.https://doi.org/10.3390/ijerph17072326
Sharma, G. &Lakhawat, S. (2017). Nutrition facts and functional potential of quinoa (Chenopodium quinoa), an ancient Andean grain: A Review. Journal of Pharmacognosy and Phytochemistry, 6(4), 1488-1489.
Shetty, K. & Sarkar, D. (2019). Introduction: Metabolic-Driven Ecological Rationale to Advance Biotechnological Approaches for Functional Foods. In Functional Foods and Biotechnology (pp. 1-4). CRC Press.https://doi.org/10.1201/9781003003830-1
Shi, M., Loftus, H., McAinch, A. J. & Su, X. Q. (2017). Blueberry as a source of bioactive compounds for the treatment of obesity, type 2 diabetes and chronic inflammation. Journal of Functional Foods, 30, 16-29.https://doi.org/10.1016/j.jff.2016.12.036
Shim, Y. Y., Song, Z., Jadhav, P. D. & Reaney, M. J. (2019). Orbitides from flaxseed (Linum usitatissimum L.): A comprehensive review. Trends in Food Science & Technology, 93, 197-211.https://doi.org/10.1016/j.tifs.2019.0 9.007
Silva dos Santos, J., Goncalves Cirino, J. P., de Oliveira Carvalho, P. & Ortega, M. M. (2021). The pharmacological action of kaempferol in central nervous system diseases: A review. Frontiers in Pharmacology, 11, 565700.
Singh, B., Singh, J. P., Shevkani, K., Singh, N. & Kaur, A. (2017). Bioactive constituents in pulses and their health benefits. Journal of Food Science and Technology, 54(4), 858-870.
Singh, M., Thrimawithana, T., Shukla, R. & Adhikari, B. (2020). Managing obesity through natural polyphenols: A review. Future Foods, 1, 100002.https://doi.org/10.1016/j.fufo.2020.100002
Soni, R. P., Katoch, M., Kumar, A. & Verma, P. (2016). Flaxseed—Composition and its health benefits. Research in Environment and Life Sciences, 9, 310-316.https://doi.org/10.13140/RG.2.2.35208.93448
Estrella, Suárez, D., Torri, L., Pagani, M. A. & Marti, A. (2018). Quinoa bitterness: Causes and solutions for improving product acceptability. Journal of the Science of Food and Agriculture, 98(11), 4033-4041.https://doi.org/10.1002/jsfa.8980
Sun, C., Zhao, C., Guven, E. C., Paoli, P., Simal‐Gandara, J., Ramkumar, K. M. & Xiao, J. (2020). Dietary polyphenols as antidiabetic agents: Advances and opportunities. Food Frontiers, 1(1), 18-44.
Tang, Y. & Tsao, R. (2017). Phytochemicals in quinoa and amaranth grains and their antioxidant, anti-inflammatory, and potential health beneficial effects: a review. Molecular Nutrition & Food Research, 61(7), 1600767.https://doi.org/10.1002/mnfr.201600767
Unusan, N. (2020). Proanthocyanidins in grape seeds: An updated review of their health benefits and potential uses in the food industry. Journal of Functional Foods, 67, 103861.https://doi.org/10.1016/j.jff.2020.103861
USDA (2019). National nutrient database for standard reference legacy release: Full report (all nutrients) 20067, sorghum grain, (2019).
Vanamala, J. K., Massey, A. R., Pinnamaneni, S. R., Reddivari, L. & Reardon, K. F. (2018). Grain and sweet sorghum (Sorghum bicolor L. Moench) serves as a novel source of bioactive compounds for human health. Critical Reviews in Food Science and Nutrition, 58(17), 2867-2881.https://doi.org/10.1080/10408398.2017.1344186
Villacrés, E., Quelal, M., Galarza, S., Iza, D. & Silva, E. (2022). Nutritional Value and Bioactive Compounds of Leaves and Grains from Quinoa (Chenopodium quinoa Willd.). Plants, 11(2), 213.  https://doi.org/10.3390/plants11020213
Ward, M. G., Li, G., Barbosa-Lorenzi, V. C. & Hao, M. (2017). Stigmasterol prevents glucolipotoxicity induced defects in glucose-stimulated insulin secretion. Scientific Reports, 7(1), 1-13.
Wongwaiwech D., Weerawatanakorn M. &Boonnoun P. (2020). Subcritical dimethyl ether extraction as a simple method to extract nutraceuticals from byproducts from rice bran oil manufacture. Scientific Reports, 10(1), 1-10.https://doi.org/10.1038/s41598-020-78011-z
Xie, J., Xiong, J., Ding, L. S., Chen, L., Zhou, H., Liu, L. & Qing, L. S. (2018). A efficient method to identify cardioprotective components of Astragali Radix using a combination of molecularly imprinted polymers-based knockout extract and activity evaluation. Journal of Chromatography A, 1576, 10-18.https://doi.org/10.1016/j.chroma.2018.0 9.027
Xu, Y., Ryu, S., Lee, Y. K. & Lee, H. J. (2020). Brassicasterol from edible aquacultural Hippocampus abdominalis exerts an anti-cancer effect by dual-targeting AKT and AR signaling in prostate cancer. Biomedicines, 8(9), 370.https://doi.org/10.3390/biomedicines8090370
Yagasaki, K. (2019). Phytochemicals, Their Intestinal Metabolites, and Skeletal Muscle Function. In Nutrition and skeletal muscle (pp. 421-438). Academic Press.
Youness, R., Kamel, R., A. Elkasabgy, N., Shao, P. & A. Farag, M. (2021). Recent advances in tannic acid (gallotannin) anticancer activities and drug delivery systems for efficacy improvement; a comprehensive review. Molecules, 26(5), 1486.https://doi.org/10.3390/mol ecules26051486
Yu, J., Yan, F., Lu, Q. & Liu, R. (2018). Interaction between sorghum procyanidin tetramers and the catalytic region of glucosyltransferases-I from Streptococcus mutans UA159. Food Research International, 112, 152-159.https://doi.org/10.1016/j.f oodres.2018.06.027
Yuhan Tang, Y. J. & Jiasong Meng, J. T. (2018). A brief review of physiological roles, plant resources, synthesis, purification and oxidative stability of Alpha-linolenic Acid. Emirates Journal of Food and Agriculture, 341-356.https://doi.org/10.9755/ejfa.2018.v30.i5.1676
Zhao, X., Tao, J., Zhang, T., Jiang, S., Wei, W., Han, H. & Yue, H. (2019). Resveratroloside alleviates postprandial hyperglycemia in diabetic mice by competitively inhibiting α-glucosidase. Journal of Agricultural and Food Chemistry, 67(10), 2886-2893.https://doi.org/10.1021/acs.jafc.9 b00455
Section
Research Articles

How to Cite

Bioactive and pharmacological characterization of Chenopodium quinoa, Sorghum bicolor and Linum usitassimum: A review. (2022). Journal of Applied and Natural Science, 14(3), 1067-1084. https://doi.org/10.31018/jans.v14i3.3796