A. Pavithra R. K. Kaleeswari T. Chitdeshwari R. Swarna Priya D. Uma D. Keisar Lourdusamy


The human body needs calcium (Ca) to maintain strong bones and teeth and to build a strong structure, helping muscles contract and playing a crucial role in the structural and signalling process. However, low calcium consumption in the diet has related to a variety of disorders in humans, which can have long-term health repercussions. Therefore, this study aimed to evaluate the Ca biofortification capacity of cabbage (Brassica oleracea var capitata) supplied with different Ca-supplying inorganic fertilizer sources at various fixed levels based on soil liming potential grown in open field conditions where four hybrids of cabbage grown in Ca deficient acidic soil. Ca applied as Limestone (CaCO3) (150% and 175% liming potential) and Dolomitic limestone [CaMg(CO3)2]150% liming potential yield high Ca content in cabbage head and foliage (61.3 mg 100 g-1), high glucosinolates content (53.12 mg 100 g-1) and lower oxalate(0.31 mg 100 g-1) that produced firmer head as compared with Ca untreated control which also promoted high market value for Ca biofortified ones. On the other hand, Ca addition leads to lower Fe and Mg content in the cabbage tissues due to an antagonistic effect. All four hybrids of cabbage studied using the agronomic method of biofortification significantly(p≤0.05) improved Ca enrichment (20% more compared to control) without showing any toxicity symptoms making possibility to obtain Ca biofortified cabbage in acidic soil of a hilly ecosystem by application of liming.





Acidic soil, Biofortification, Cabbage, Calcium, Liming potential

Atanasova, E. (2008). Effect of nitrogen sources on the nitrogenous forms and accumulation of amino acid in head cabbage. Plant Soil and Environment, 54(2), 66.
Avalhães, C. C., Prado, R. D. M., Romualdo, L. M., Rozane, D. E. & Correia, M. A. R. (2009). Omission of macronutrients of the growth and nutritional status of plants of cabbage grown in nutrient solution. Bioscience Journal, 25(5), 21-28.
Barreto, R. F., Júnior, A. A. S., Maggio, M. A. & de Mello Prado, R. (2017). Silicon alleviates ammonium toxicity in cauliflower and in broccoli. Scientia Horticulturae, 225, 743-750. https://doi.org/10.1016/j.scienta.2017.08.014
Behera, S. K., & Shukla, A. K. (2015). Spatial distribution of surface soil acidity, electrical conductivity, soil organic carbon content and exchangeable potassium, calcium and magnesium in some cropped acid soils of India. Land Degradation & Development, 26(1), 71-79.
Bell, L. & Wagstaff, C. (2014). Glucosinolates, myrosinase hydrolysis products, and flavonols found in rocket (Eruca sativa and Diplotaxis tenuifolia). Journal of agricultural and food chemistry, 62(20), 4481-4492. https://doi.org/10.1021/jf501096x
Bonomelli, C., Gil, P. M. & Schaffer, B. (2019). Effect of soil type on calcium absorption and partitioning in young avocado (Persea americana Mill.) trees. Agronomy, 9(12), 837. https://doi.org/10.3390/agronomy9120837
Borghesi, E., Carmassi, G., Uguccioni, M. C., Vernieri, P. & Malorgio, F. (2013). Effects of calcium and salinity stress on quality of lettuce in soilless culture. Journal of plant nutrition, 36(5), 677-690. https://doi.org/10.1080/01 904167.2012.721909
Burstrom, H. G. (1968). Calcium and plant growth. Biological Reviews, 43(3), 287-316.https://doi.org/10.1111/j.1469-185X.1968.tb00962.x
Cámara-Martos, F., Obregón-Cano, S. & de Haro-Bailón, A. (2022). Glucosinolates, Ca, Se Contents, and Bioaccessibility in Brassica rapa Vegetables Obtained by Organic and Conventional Cropping Systems. Foods, 11(3), 350. https://doi.org/10.3390/foods11030350
Cámara-Martos, F., Obregón-Cano, S., Mesa-Plata, O., Cartea-González, M. E. & de Haro-Bailón, A. (2021). Quantification and in vitro bioaccessibility of glucosinolates and trace elements in Brassicaceae leafy vegetables. Food Chemistry, 339, 127860. https://doi.org/10.1016/j.foodchem.2020.127860
Chang, C., Li, F., Wang, Q., Hu, M., Du, Y., Zhang, X., Zhang, X., Chen,C & Yu, H. Y. (2022). Bioavailability of antimony and arsenic in a flowering cabbage–soil system: Controlling factors and interactive effect. Science of The Total Environment, 815, 152920. https://doi.org/10.1016/j.scitotenv.2022.152920
Choi, S. H., Park, S., Lim, Y. P., Kim, S. J., Park, J. T. & An, G. (2014). Metabolite profiles of glucosinolates in cabbage varieties (Brassica oleracea var. capitata) by season, color, and tissue position. Horticulture, Environment, and Biotechnology, 55(3), 237-247.
Coelho, A. R. F., Marques, A. C., Pessoa, C. C., Luís, I. C., Daccak, D., Simões, M., Roboredo, F.H., Pessoa, M., Silva, M.M., Legoinha, P. & Lidon, F. C. (2021, May). Calcium Biofortification in Solanum tuberosum L. cv. Agria: A Technical Workflow. In International Conference on Water Energy Food and Sustainability (pp. 147-154). Springer, Cham.
D’Imperio, M., Renna, M., Cardinali, A., Buttaro, D., Serio, F. & Santamaria, P. (2016). Calcium biofortification and bioaccessibility in soilless “baby leaf” vegetable production. Food Chemistry, 213, 149-156. https://doi.org/10.1016/j.foodchem.2016.06.071
da Silva, D. L., de Mello Prado, R., Tenesaca, L. F. L., da Silva, J. L. F. & Mattiuz, B. H. (2021). Silicon attenuates calcium deficiency by increasing ascorbic acid content, growth and quality of cabbage leaves. Scientific Reports, 11(1), 1-9.
Dayod, M., Tyerman, S. D., Leigh, R. A. & Gilliham, M. (2010). Calcium storage in plants and the implications for calcium biofortification. Protoplasma, 247(3), 215-231.
de Almeida, H. J., Carmona, V. V., Dutra, A. F. & Cecílio Filho, A. B. (2022). Growth and physiological responses of cabbage cultivars biofortified with inorganic selenium fertilizers. Scientia Horticulturae, 302, 111154. https://doi.org/10.1016/j.scienta.2022.111154
De Souza, J. Z., De Mello Prado, R., Silva, S. L. D. O., Farias, T. P., Neto, J. G. & Souza Junior, J. P. D. (2019). Silicon leaf fertilization promotes biofortification and increases dry matter, ascorbate content, and decreases post-harvest leaf water loss of chard and kale. Communications in Soil Science and Plant Analysis, 50(2), 164-172. https://doi.org/10.1080/00103624.2 018.1556288
Demidchik, V., Shabala, S., Isayenkov, S., Cuin, T. A. & Pottosin, I. (2018). Calcium transport across plant membranes: mechanisms and functions. New Phytologist, 220(1), 49-69. https://doi.org/10.1111/nph.15266
Di Gioia, F., Petropoulos, S. A., Ozores-Hampton, M., Morgan, K. & Rosskopf, E. N. (2019). Zinc and iron agronomic biofortification of Brassicaceae microgreens. Agronomy, 9(11), 677. https://doi.org/10.3390/agr onomy9110677
Duarte, L. O., Clemente, J., Caixeta, I. A. B., Senoski, M. D. P. & Aquino, L. A. D. (2019). Dry matter and nutrient accumulation curve in cabbage crop. Revista Caatinga, 32, 679-689. https://doi.org/10.1590/1983-21252019v 32n312rc
Gomez, K. A. & Gomez, A. A. (2010). Statistical procedures for agricultural research.
Harinarayan, C. V., Akhila, H., & Shanthisree, E. (2021). Modern india and dietary calcium deficiency—half a century nutrition data—retrospect–introspect and the road ahead. Frontiers in Endocrinology, 12, 583654. https://doi.org/10.3389/fendo.2021.583654
Hocking, B., Tyerman, S. D., Burton, R. A. & Gilliham, M. (2016). Fruit calcium: transport and physiology. Frontiers in plant science, 7, 569. https://doi.org/10.3389/fpls.20 16.00569
Jakson, M. L. (1964). Soil Chemical Analysis,(Fourth Printing).
Jamil, M., Rehman, S. & Rha, E. S. (2007). Salinity effect on plant growth, PSII photochemistry and chlorophyll content in sugar beet (Beta vulgaris L.) and cabbage (Brassica oleracea capitata L.). Pak. J. Bot, 39(3), 753-760.
Joel, E. B., Mafulul, S. G., Adamu, H. E., Goje, L. J., Tijjani, H., Igunnu, A. & Malomo, S. O. (2020). Peroxidase from waste cabbage (Brassica oleracea capitata L.) exhibits the potential to biodegrade phenol and synthetic dyes from wastewater. Scientific African, 10, e00608. https://doi.org/10.1016/j.sciaf.2020.e00608
Kang, S. M., Shaffique, S., Kim, L. R., Kwon, E. H., Kim, S. H., Lee, Y. H., Kalsoom, K.,Aaqil Khan, M.& Lee, I. J. (2021). Effects of organic fertilizer mixed with food waste dry powder on the growth of Chinese cabbage seedlings. Environments, 8(8), 86. https://doi.org/10.3390/environments8080086
Kerton, M., Newbury, H. J., Hand, D. & Pritchard, J. (2009). Accumulation of calcium in the centre of leaves of coriander (Coriandrum sativum L.) is due to an uncoupling of water and ion transport. Journal of Experimental Botany, 60(1), 227-235. https://doi.org/10.1093/jxb/ern279
Kim, Y. J., Chun, J. H. & Kim, S. J. (2015). Influence of the lime on inorganic ion and glucosinolate contents in Chinese cabbage. Korean Journal of Agricultural Science, 42(4), 415-421. https://doi.org/10.7744/cnujas.2015.42.4.415
Koudela, M. & Petříková, K. (2007). Nutritional composition and yield of endive cultivars–Cichorium endivia L. Hort. Sci, 34(1), 6-10.
Lee, C. H., Lee, D. K., Ali, M. A. & Kim, P. J. (2008). Effects of oyster shell on soil chemical and biological properties and cabbage productivity as a liming materials. Waste Management, 28(12), 2702-2708. https://doi.org/10.1016/j.wasman.2007.12.005
Lee, J., Noh, Y. H., Park, K. H., Kim, D. S., Jeong, H. T., Lee, H. S., Min, S.R. & Kim, H. (2019). Environmentally friendly fertilizers can enhance yield and bioactive compounds inChinese cabbage (Brassica rapa ssp. pekinensis). Turkish Journal of Agriculture and Forestry, 43(2), 138-150. 10.3906/tar-1807-28
Lindsay, W. L. & Norvell, W. (1978). Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil science society of America journal, 42(3), 421-428. https://doi.org/10.2136/sssaj1978.03615995004200030009x
Ma, S., Chen, W., Zhang, J. & Shen, H. (2020). Influence of simulated acid rain on the physiological response of flowering Chinese cabbage and variation of soil nutrients. Plant, Soil and Environment, 66(12), 648-657. https://doi.org/10.17221/469/2020-PSE
Managa, M. G., Shai, J., Thi Phan, A. D., Sultanbawa, Y., & Sivakumar, D. (2020). Impact of household cooking techniques on African Nightshade and Chinese Cabbage on phenolic compounds, antinutrients, in vitro antioxidant, and β-glucosidase activity. Frontiers in nutrition, 7, 580550. https://doi.org/10.3389/fnut.2020.580550
Muindi, E. M., Mrema, J., Semu, E., Mtakwa, P., & Gachene, C. (2015). Effects of lime-aluminium-phosphate interactions on maize growth and yields in acid soils of the Kenya highlands. American Journal of Agriculture and Forestry, 3(6), 244-252.
Nazrul, M. I. & Shaheb, M. R. (2016). Integrated approach for liming and fertilizer application on yield of cabbage and cauliflower in acidic soil of Sylhet. Bangladesh Agronomy Journal, 19(1), 49-57. https://doi.org/10.3329/baj.v19 i1.29 870
Neeser, C., Savidov, N., & Driedger, D. (2005, August). Production of hydroponically grown calcium fortified lettuce. In I International Symposium on Human Health Effects of Fruits and Vegetables 744 (pp. 317-322). https://doi.org/10.17660/ActaHortic.2007.744.33
Ojok, J., Omara, P., Opolot, E., Odongo, W., Olum, S., Gijs, D.L., Gellynck, X., De Steur, H. & Ongeng, D. (2019). Iodine agronomic biofortification of cabbage (Brassica oleracea var. capitata) and Cowpea (Vigna unguiculata L.) is effective under farmer field conditions. Agronomy, 9(12), 797.
Page, A. L., Miller, R. H. & Keeney, D. R. (1982). Methods of soil analysis Part 2. Chemical and microbiological properties. Madison, WI, USA: American Society of Agronomy, Inc. Soil Science Society of America, Inc. Publishers.
Pessoa, C. C., Lidon, F. C., Coelho, A. R. F., Caleiro, J. C., Marques, A. C., Luís, I. C., ... & Reboredo, F. H. (2021). Calcium biofortification of Rocha pears, tissues accumulation and physicochemical implications in fresh and heat-treated fruits. Scientia Horticulturae, 277, 109834. https://doi.org/10.1016/j.scienta.2020.109834
Piper, C. S. (1966). Soil and plant analysis. (Hans Publishers: Bombay, India).
Posmyk, M. M., Kontek, R. & Janas, K. M. (2009). Antioxidant enzymes activity and phenolic compounds content in red cabbage seedlings exposed to copper stress. Ecotoxicology and Environmental Safety, 72(2), 596-602. https://doi.org/10.1016/j.ecoenv.2008.04.024
Prasad, R. & Shivay, Y. S. (2020). Agronomic biofortification of plant foods with minerals, vitamins and metabolites with chemical fertilizers and liming. Journal of Plant Nutrition, 43(10), 1534-1554. https://doi.org/10.1080/0190416 7.2020.1738464
Rosen, C. J. Fritz, V. A., Gardner, G. M., Hecht, S. S., Carmella, S. G., & Kenney, P. M. (2005). Cabbage yield and glucosinolate concentrations as affected by nitrogen and sulfur fertility. Hort. Science, 40(5), 1493-1498. https://doi.org/10.21273/HORTSCI.40.5.1493
Rungapamestry, V., Duncan, A. J., Fuller, Z. & Ratcliffe, B. (2006). Changes in glucosinolate concentrations, myrosinase activity, and production of metabolites of glucosinolates in cabbage (Brassica oleracea var. capitata) cooked for different durations. Journal of Agricultural and Food Chemistry, 54(20), 7628-7634. https://doi.org/1 0.1021/jf0607314
Santamaria, P. (2006). Nitrate in vegetables: toxicity, content, intake and EC regulation. Journal of the Science of Food and Agriculture, 86(1), 10-17. https://doi.org/10.1002/jsfa.2351
Shin, R. (2014). Strategies for improving potassium use efficiency in plants. Molecules and Cells, 37(8), 575. https://doi.org/10.14348%2Fmolcells.2014.0141
Shoemaker, H. E., McLean, E. O. & Pratt, P. F. (1961). Buffer methods for determining lime requirement of soils with appreciable amounts of extractable aluminum. Soil Science Society of America Journal, 25(4), 274-277. https://doi.org/10.2136/sssaj1961.03 61599500250004001 4x
Slesak, I., Libik, M., Karpinska, B., Karpinski, S. & Miszalski, Z. (2007). The role of hydrogen peroxide in regulation of plant metabolism and cellular signalling in response to environmental stresses. Acta Biochimica Polonica, 54(1), 39-50. https://doi.org/10.18388/abp.2007_3267
Subbaiah, B. V. (1956). A rapid procedure for estimation of available nitrogen in soil. Curr. Sci., 25, 259-260.
Tang, R. J. & Luan, S. (2017). Regulation of calcium and magnesium homeostasis in plants: from transporters to signaling network. Current Opinion in Plant Biology, 39, 97-105. https://doi.org/10.1016/j.pbi.2017.06.009
Upadhyaya, H., Begum, L., Dey, B., Nath, P. K., & Panda, S. K. (2017). Impact of calcium phosphate nanoparticles on rice plant. Journal of Plant Science and Phytopathology, 1(1), 001-010. https://dx.doi.org/10.29328/journal.jp sp.1001001
Walkley, A. & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil science, 37(1), 29-38.
Wei, S., Qin, G., Zhang, H., Tao, S., Wu, J., Wang, S. & Zhang, S. (2017). Calcium treatments promote the aroma volatiles emission of pear (Pyrus ussuriensis ‘Nanguoli’) fruit during post-harvest ripening process. Scientia Horticulturae, 215, 102-111. https://doi.org/10.1016/j.scienta.20 16.12.008
White, P. J., & Broadley, M. R. (2003). Calcium in plants. Annals of botany, 92(4), 487-511. https://doi.o rg/10.1093/aob/mcg164
Xie, K., Cakmak, I., Wang, S., Zhang, F. & Guo, S. (2021). Synergistic and antagonistic interactions between potassium and magnesium in higher plants. The Crop Journal, 9(2), 249-256. https://doi.org/10.1016/j.cj.2020.10.005
Yoon, K. Y., Woodams, E. E. & Hang, Y. D. (2006). Production of probiotic cabbage juice by lactic acid bacteria. Bioresource technology, 97(12), 1427-1430. https://doi.org/10.1016/j.biortech.2005.06.018
Yougen, W., Xiangwei, C., Zhongxun, Z., Mingzhi, C., Ke, C. & Luoxia, W. (2005). Influences of calcium treatment on the growth characters and shelf lives of Chinese cabbage. Zhongguo Nong xue Tong bao= Chinese Agricultural Science Bulletin, 21(7), 223-226.
Zonayet, M. & Ahmed, M.(2020). Effect of lime on the yield performance cabbage, cauliflower, tomato, chili and brinjal in the Hill Valley soil of Bangladesh. http://dx.doi.org/10.12692/ijb/17.2.185-193
Zoo, T., Xu, N., Hu, G., Pang, J. & Xu, H. (2014). Biofortification of soybean sprouts with zinc and bioaccessibility of zinc in the sprouts. Journal of the Science of Food and Agriculture, 94 (14), 3053-3060. https://doi.org/10.1002/jsfa.6658
Citation Format
How to Cite
Agronomic biofortification of calcium in cabbage (Brassica Oleracea var capitata) applied with different sources of liming in Ca deficient acidic soil of Coonoor, The Nilgiris (Typic Dystropept) . (2022). Journal of Applied and Natural Science, 14(4), 1286-1296. https://doi.org/10.31018/jans.v14i4.3791
More Citation Formats:
Research Articles

How to Cite

Agronomic biofortification of calcium in cabbage (Brassica Oleracea var capitata) applied with different sources of liming in Ca deficient acidic soil of Coonoor, The Nilgiris (Typic Dystropept) . (2022). Journal of Applied and Natural Science, 14(4), 1286-1296. https://doi.org/10.31018/jans.v14i4.3791