Standardization of optimum melatonin concentration for drought tolerance at germination and early development stage in rice (CO-54)
Article Main
Abstract
Drought stress poses a serious threat to production and nutritional security. In recent years, foliar application of plant growth regulators (PGRs) and nutrients are increasingly employed to overcome physiological constraints resulting in enhanced crop production. Melatonin is a new biomolecule recently found to ameliorate the effect of biotic and abiotic stresses in crop plants. Hence, the present experiment was conducted to assess the optimum concentration of melatonin to mitigate the adverse effect of drought stress on germination and growth components in rice variety CO-54. In this experiment, PEG-mediated drought stress (-0.5 MPa) was imposed with different concentrations of melatonin (at doses of 50, 100, 150, 200, and 250 µM) seed treatments. Together, these results indicated that 200 µM melatonin-treated seeds showed a greater germination percentage (60%), root length (12.23cm), shoot length (8.23cm), fresh and dry weight (0.126g and 0.095g), high vigor index (1910.22), promptness index (64.83), and germination stress index (100) respectively. The result of this experiment provides a shred of strong evidence suggesting that seed treatment of 200 µM melatonin could be considered an effective technique for mitigating the detrimental effects of drought by promoting seed germination and thereby increasing the growth components of seedlings in rice. The study demonstrates that melatonin can shield rice seedlings from the effects of drought stress.
Article Details
Article Details
Drought tolerance, Germination, Melatonin, Polyethylene glycol, Rice
Aguilera, Y., Herrera, T., Liébana, R., Rebollo-Hernanz, M., Sanchez-Puelles, C. & Martín- Cabrejas, M. A. (2015). Impact of melatonin enrichment during germination of legumes on bioactive compounds and antioxidant activity. Journal of Agricultural and Food Chemistry, 63(36), 7967–7974. https://doi.org/10.1021/acs.jafc.5b03128
Arnao, M. B. & Hernández-Ruiz, J. (2007). Melatonin promotes adventitious- and lateral root regeneration in etiolated hypocotyls of Lupinus albus L. Journal of Pineal Research, 42(2), 147–152. https://doi.org/10.1111/j.1600079X.2006.00396.x
Back, K. & Park, S. (2012). Melatonin promotes seminal root elongation and root growth in transgenic rice after germination. J Pineal Res., 53: 385–389. https://doi.org/10.1111/j.1600-079X.2012.01008.x
Bai, Y., Xiao, S., Zhang, Z., Zhang, Y., Sun, H., Zhang, K. ... & Liu, L. (2020). Melatonin improves the germination rate of cotton seeds under drought stress by opening pores in the seed coat. Peer.J., 8, e9450. https://doi.org/10.7717/peerj.9450
Benitez-King, G. A., Rios, A. Martinez. & Anton-Tay, F. (1996). In vitro inhibition of Ca2þ/ calmoduline dependent kinase II activity by melatonin. Biochim. Biophys. Acta., 1290, 191-196. https://doi.org/10.1016/0304-4165(96)00025-6
Bewley, J.D. (1997). Seed germination and dormancy. Plant Cell, 9(7), 1055–1066. doi: 10.1105/tpc.9.7.1055
Bouslama, M. & W. Schapaugh. (1984). Stress tolerance in soybeans. I. Evaluation of three screening techniques for heat and drought tolerance. Crop Science, 24 (5), 933-937. https://doi.org/10.2135/cropsci1984.0011183 X002400050026x
Chen, Q., Qi, W. B., Reiter, R. J., Wei, W. & Wang, B. M. (2009). Exogenously applied melatonin stimulates root growth and raises endogenous indoleacetic acid in roots of etiolated seedlings of Brassica juncea. Journal of Plant Physiology, 166(3), 324–328. https://doi.org/10.1016/j.jplph.2008.06.002
Dai, L., Li, J., Harmens, H., Zheng, X. & Zhang, C. (2020). Melatonin enhances drought resistance by regulating leaf stomatal behaviour, root growth and catalase activity in two contrasting rapeseed (Brassica napus L.). Plant Physiol Biochem, 149, 86–95. DOI: 10.1016/j.plaphy.202 0.01.039
Debnath, B., Islam, W., Li, M., Sun, Y., Lu, X., Mitra, S., Hussain, M., Liu, S. & Qiu, D. (2019). Melatonin mediates enhancement of stress tolerance in plants. Int J Mol Sci., 20, 1040. https://doi.org/10.3390/ijms20051040
Ellis, R. & Roberts, E. (1981). The quantification of ageing and survival in orthodox seeds. Seed Science and Technology (Netherlands), 9 (2), 373-409.
Gao, W., Zhang, Y., Feng, Z., Bai, Q., He, J. & Wang, Y. (2018). Effects of Melatonin on Antioxidant Capacity in Naked Oat Seedlings under Drought Stress. Molecules., 23, 1580. https://doi.org/10.3390/molecules23071580
Gomez, K.A. & Gomez, A. A. (1984). Statistical procedures for agricultural research, John Wiley & Sons.
Hai-Jun, Z., Na, Z., Rong-Chao, Y., Li, W., Qian-Qian, S., Dian-Bo, L., et al. (2015). Melatonin promotes seed germination under high salinity by regulating antioxidant systems, ABA and GA? Interaction in cucumber (Cucumis sativus L.). Journal of Pineal Research, 57(3), 269–279. https://doi.org/10.1111/jpi.12167
Henry, A., Wehler, R., Grondin, A., Franke, R. & Quintana, M. (2016). Environmental and physiological effects on grouping of drought tolerant and susceptible rice varieties related to rice (Oryza sativa) root hydraulics under drought. Annals of Botany, 118(4), 711–724. https://doi.org/10.1093/aob/mcw068
Hernandez-Ruiz, J., Cano, A. & Arnao, M. B. (2004). Melatonin: A growth stimulating compound present in lupin tissues. Planta, 220(1), 140–144. https://doi.org/10.1007/s00425-004-1317-3
Hossain, M.S., Li, J., Sikdar, A., Hasanuzzaman, M., Uzizerimana, F., Muhammad, I., Yuan, Y., Zhang, C., Wang, C. & Feng, B. (2020). Exogenous Melatonin Modulates the Physiological and Biochemical Mechanisms of Drought Tolerance in Tartary Buckwheat (Fagopyrum tataricum (L.) Gaertn). Molecules, 25, 2828.
Huang, B., Chen, Y.E., Zhao, Y.Q., Ding, C.B., Liao, J.Q., Hu, C., Zhou, L.J., Zhang, Z.W., Yuan, S. & Yuan, M. (2019). Exogenous melatonin alleviates oxidative damages and protects photosystem ii in maize seedlings under drought stress. Front Plant Sci., 10, 1–16. https://doi.org/10.3389/fpls.201 9.00677
Kang, K., Lee, K., Park, S., Kim, Y. S. & Back, K. (2010). Enhanced production of melatonin by ectopic overexpression of human serotonin N-acetyltransferase plays a role in cold resistance in transgenic rice seedlings. Journal of Pineal Research, 49(2), 176–182. https://doi.org/10.1111/j.1600-079X.2010.00783.x
Khan, M.N., Khan, Z., Luo, T., Liu, J., Rizwan, M., Zhang, J., Xu, Z., Wu, H. & Hu, L. (2020). Seed priming with gibberellic acid and melatonin in rapeseed: Consequences for improving yield and seed quality under drought and non-stress conditions. Ind Crops Prod, 156, 112850. DOI: 10.1016/j.indcrop.2020.112850
Korkmaz, A., Karaca, A., Kocacinar, F. & Cuci, Y. (2017). The effects of seed treatment with melatonin on germination and emergence performance of pepper seeds under chilling stress. Tarim Bilimleri Dergisi – Journal of Agricultural Sciences, 23, 167–176.
Kumbhar, S.D., Kulwal, P.L., Patil, J.V., Sarawate, C.D., Gaikwad, A.P. & Jadhav, A.S. (2015). Genetic diversity and population structure in landraces and improved rice varieties from India. Rice Science, 22(3), 99–107. https://doi.org/10.1016/j.rsci.2015.05.013
Kuromori, T., Seo, M. & Shinozaki, K. (2018). ABA Transport and Plant Water Stress Responses. Trends Plant Sci, 23 (6), 513-22. DOI: 10.1016/j.tplants.20 18.04.001
Leishman, M.R. & Westoby, M. (1994). The role of seed size in seedling establishment in dry soil conditions-experimental evidence from semi-arid species. J. Ecology, 82 (2), 249-258. https://doi.org/10.2307/2261293
Li, J., Zeng, L., Cheng, Y., Lu, G., Fu, G., Ma, H., Liu, Q., Zhang, X., Zou, X. & Li, C. (2018). Exogenous melatonin alleviates damage from drought stress in Brassica napus L. (rapeseed) seedlings. Acta Physiol Plant, 40, 1–11. DOI: 10.7717/peerj.7793
Liang, D., Ni, Z., Xia, H., Xie, Y., Lv, X., Wang, J., Lin, L., Deng, Q. & Luo X. (2019). Exogenous melatonin promotes biomass accumulation and photosynthesis of kiwifruit seedlings under drought stress. Sci Hortic (Amsterdam). 246, 34–43. DOI: 10.3390/ijms21030852
Liu, J., Shabala, S., Zhang, J., Ma, G., Chen, D., Shabala, L., Zeng, F., Chen, Z., Zhou, M., Venkataraman, G. & Zhao, Q. (2020). Melatonin improves rice salinity stress tolerance by NADPH oxidase‐dependentcontrol of the plasma membrane K + transporters and K + homeostasis. Plant Cell Environ pce., 13759. https://doi.org/10.1111/pce.13759
Meng, J. F., Xu, T. F., Wang, Z. Z., Fang, Y. L., Xi, Z. M. & Zhang, Z. W. (2014). The ameliorative effects of exogenous melatonin on grape cuttings under water‐deficient stress: antioxidant metabolites, leaf anatomy, and chloroplast morphology. Journal of Pineal Research, 57(2), 200-212. https://doi.org/10.1111/jpi.12159
Pandey, V. & Shukla, A. (2015). Acclimation and tolerance strategies of rice under drought stress. Rice Science, 22(4), 147–161. https://doi.org/10.1016/j.rsci.2015.04.001
Posmyk, M.M., Kuran, H., Marciniak, K. & Janas, K. M. (2008). Presowing seed treatment with melatonin protects red cabbage seedlings against toxic copper ion concentrations. J Pineal Res., 45, 24–31. https://doi.org/10.1111/j.1600-079X.2007.00552.x
Rajjou, L., Gallardo, K., Debeaujon, I., Vandekerckhove, J., Job, C. & Job, D. (2004). The effect of alpha-amanitin on the Arabidopsis seed proteome highlights the distinct roles of stored and neosynthesized mRNAs during germination. Plant Physiology, 134(4), 1598–1613. https://doi.org/10.1104/pp.103.036293
Sadak, M.S. & Ahmed Bakry, B. (2020). Alleviation of drought stress by melatonin foliar treatment on two flax varieties under sandy soil. Physiol Mol Biol Plants, 1,1-3. https://doi.org/10.1007/s12298-020-00789-z
Sapra, V., E. Savage, A. A. & Beyl, C. (1991). Varietal differences of wheat and triticale to water stress. Journal of Agronomy and Crop Science, 167 (1), 23-28. https://doi.org/10.1111/j.1439-037X.1991.tb00929.x
Sarropoulou, V., Dimassi-Theriou, K., Therios, I. & Koukourikou-Petridou, M. (2012). Melatonin enhances root regeneration, photosynthetic pigments, biomass, total carbohydrates and proline content in the cherry rootstock PHL-C (Prunus avium × Prunus cerasus). Plant Physiology and Biochemistry, 61, 162–168. https://doi.org/10.1016/j.plaphy.2012.10.001
Sharif, R., Xie, C., Zhang, H., Arnao, M.B., Ali, M., Ali, Q., Muhammad, I., Shalmani, A., Nawaz, M.A., Chen, P. & Li, Y. (2018). Melatonin and its effects on plant systems. Molecules, 23(9), 2352. doi: 10.3390/molecules23092352
Sokoto, M.B. & Muhammad, A. (2014). Response of rice varieties to water stress in Sokoto, Sudan Savannah, Nigeria. Journal of Bioscience Med., 2, 68–74. DOI: 10.4236/jbm.2014.21008
Steven, F., Isabel, D.S., Heather, C. & Finch-Savage, W.E. (2011). Dormancy cycling in Arabidopsis seeds is controlled by seasonally distinct hormone-signaling pathways. Proceedings of the National Academy of Sciences of the United States of America, 108(50), 20236–20241. https://doi.org/10.1073/pnas.1116325108
Tiwari, R.K., Lal, M.K., Naga, K.C., Kumar, R., Chourasia, K.N., S, S., Kumar, D. & Sharma. S. (2020). Emerging roles of melatonin in mitigating abiotic and biotic stresses of horticultural crops. Sci Hortic, 272, 109592. https://doi.org/10.1016/j.scienta.2020.109592
Umapathi, M., Kalarani, M. K. & Srinivasan, S. (2018). Optimization of Melatonin to Mitigate Cadmium Stress at Seedling Level in Tomato. Madras Agricultural Journal, 105.Wei, W., Li, Q.T., Chu, Y.N., Reiter, R.J., Yu, X.M., Zhu, D.H., Zhang, W.K., Ma, B., Lin, Q. & Zhang, J, S. (2014). Melatonin enhances plant growth and abiotic stress tolerance in soybean plants. Journal of Experimental Botany, 66 (3), 695-707. https://doi.org/10.1111/jpi.12367
Weitbrecht, K., Muller, K. & Leubnermetzger, G. (2011). First off the mark: early seed germination. Journal of Experimental Botany, 62(10), 3289–3309. https://doi.org/10.1093/jxb/err030
Xiao, S., Liu, L., Wang, H., Li, D., Bai, Z., Zhang, Y., Sun, H., Zhang, K. & Li, C. (2019). Exogenous melatonin accelerates seed germination in cotton (Gossypium hirsutum L.). PloS One, 14(6), 0216575. https://doi.org/10.1371/journal.pone.0216575
Zhang, L., Jia, J., Xu, Y., Wang, Y., Hao, J. & Li, T. (2012). Production of transgenic Nicotiana sylvestris plants expressing melatonin synthetase genes and their effect on UV-B-induced DNA damage. In Vitro Cellular & Developmental Biology- Plant, 48 (3), 275-282. https://doi.org/10.1007/s11627-011-9413-0Zhang, N., Zhao, B., Zhang, H.J., Weeda, S., Yang, C., Yang, Z.C., Ren, S. & Guo, Y.D. (2013). Melatonin promotes water-stress tolerance, lateral root formation, and seed germination in cucumber (Cucumis sativus L.). J Pineal Res., 54, 15–23. https://doi.org/10.1111/j.1600-079X.2012.01015.x
Zhang, H.J., Zhang, N., Yang, R.C., Wang, L., Sun, Q.Q., Li, D.B., Cao, Y.Y., Weeda, S., Zhao, B., Ren, S., et al. (2014). Melatonin promotes seed germination under high salinity by regulating antioxidant systems, ABA and GA4 interaction in cucumber (Cucumis sativus L.). J. Pineal Res., 57, 269–279. https://doi.org/10.1111/jpi.12167
Zhang, J., Shi, Y., Zhang, X., Du, H., Xu, B. & Huang, B. (2017). Melatonin suppression of heat-induced leaf senescence involves changes in abscisic acid and cytokinin biosynthesis and signaling pathways in perennial ryegrass (Lolium perenne L.). Environmental and Experimental Botany, 138, 36–45.
Zhan, H., Nie, X., Zhang, T., Li, S., Wang, X., Du, X., Tong, W. & Song, W. (2019). Melatonin: A small molecule but important for salt stress tolerance in plants. Int J Mol Sci, 20 (3), 709. https://doi.org/10.3390/ijms20030709
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)