##plugins.themes.bootstrap3.article.main##

V. Lavanya M. Ganga K. Rajamani B. Meenakumari R. Gnanam

Abstract

Vegetatively propagated crops like Jasminum auriculatum have a constraint in genetic variation due to a narrow genetic base that restricts the insights in any crop breeding programme. Mutation breeding is a potential tool that directs a way to create desirable variation effectively in vegetatively propagated crops. The optimum dose of mutagen is the one which produces the maximum frequency of mutation in turn the variation, with minimum killing. The aim of the present paper unveils the Lethal Dose (LD50) and the growth reduction dose (GR50) for both Gamma irradiation (GI) and Ethyl methane sulphonate (EMS) for the ecotype ‘Muthu Mullai’ of Jasminum auriculatum. These parameters of GR and EMS treated cuttings were analysed by considering the GR50 values of the mortality rate (57%, 48%), survival percentage (12.479Gy, 13.268mM), shoot length (18.59Gy, 18.28mM), root length (20.39Gy, 18.17mM), number of leaves (22.29Gy, 17.47mM), number of sprouts (22.97Gy, 16.17mM), vigour index (10.43Gy, 11.05mM), leaf length (21.61Gy, 19.90mM) and leaf width (19.2Gy, 16.17mM). The LD50 value was 12.479 Gy for GI and 13.268 mM for EMS treatment. The GR50 for different growth parameters ranged from 14.93 to 22.9 Gy for GI and 1.05 to 19.9 mM for EMS treatment. The mutagenic efficiency and effectiveness were 214.96 and 89.36 for GI and 48.66 and 33.77 for EMS treatment, respectively. These doses can be used for generating considerable variation, which can be put to use in future crop improvement programmes for Jasmine.

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Effectiveness, GR50, LD50, Mutation, Mutagenic efficiency

References
Alan Álvarez-Holguína., Carlos Raúl Morales-Nietob., Carlos Hugo Avendaño-Arrazatec., Raúl Corrales-Lermab., Federico Villarreal-Guerrerob., Eduardo Santellano-Estradab & Yaudiel Gómez-Simutad. (2019). Mean lethal dose (LD50) and growth reduction (GR50) due to gamma radiation in Wilman lovegrass (Eragrostis superba). Rev Mex CiencPecu., 10(1), 227-238.
Ambavane, A.R., Sawardekar, S.V., Sawantdesai, S.A. & Gokhale, N.B. (2015). Studies on mutagenic effectiveness and efficiency of gamma rays and its effect on quantitative traits in finger millet (Eleusine coracana L. Gaertn). Journal of Radiation Research and Applied Sciences, 8(1), 120-125. https://doi.org/10.1016/j.jrras.2014.12.004.
Auerbach, C., (1976). The history of mutation research. In: Mutation research. Springer Boston MA https://doi.org/10.1007/978-1-4899-3103-0_1
Bado. & Souleymane (2017). Plant mutation breeding for the improvement of vegetatively propagated crops: Successes and challenges. CAB Reviews Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 12. 10.1079/PAVSNNR201712028.
Dada., Keji Anagbogu., Chinyere., Forster., Abimbola., Muyiwa Adenuga., Omotayo Olaniyi. & Olayinka Bado Souleymane. (2018). Biological effect of gamma irradiation on vegetative propagation of Coffea arabica L. African Journal of Plant Science, 12, 122-128. 10.5897/AJP S2016.1504.
Datta, S.K., Shukla, R., Azad Mandal, A.K., Hossain., Zahed., Chatterjee., Jolly., Sarathchandra, T.M., Popan., Somkid. & Narula Rajiv., (2003). Radiosensitivity of some seed and vegetatively propagated crops. Journal of Nuclear Agriculture and Biology, 32(3-4), 167-178.
Ghosh, Sanchita., Ganga, M. & Soorianathasundaram, K., (2018). Determination of radio sensitivity of jasmine (Jasminum spp.) to gamma rays. Electronic Journal of Plant Breeding, 9 (3), 956 – 965. DOI: 10.5958/0975-928X.2018.00119.9
Ghosh, Sanchita., Ganga, M. & Soorianathasundaram, K., (2020). Induction of mutation in Jasminum grandiflorum with gamma rays and EMS and identification of novel mutants using molecular markers and SEM imaging. Indian Journal of Horticulture, 77(4), 695DOI:10.5958/0974-0112.2020.00101.2
Ismaila Muhammada, B., Mohd, Y., Rafii, A., Muhamad Hazim Nazli, C., Shairul Izan Ramleec., Abdul Rahim Harund & Yusuff Oladosu., (2021). Determination of lethal (LD) and growth reduction (GR)doses on acute and chronic gamma- irradiated Bambara groundnut [Vigna subterranea (L.) Verdc.] varieties. Journal Of Radiation Research and Applied Sciences, 14(1), 133–145. https://doi.org/10.1080/16878507.2021.1883320
Konzak, C.F., Nilan, R.A., Wagner, J., & Foster, R.J., (1965). Efficient chemical mutagenesis. The use of induced mutations in plant breeding (FAO / IAEA Meeting, Rome). Radiat. Bot. (Suppl.) 75, 49-70.
Layek., Santanu., Pramanik., Subhradeep Das., Arindam Gupta., Akhilesh Bhunia., Arindam Pandit & Manas Kumar., (2021). Effect of gamma radiation on seed germination and seedling growth of snake gourd (Trichosanthesanguina L.). South African Journal of Botany, 10.1016/j.sajb.2021.07.039.
Syarifah Iis Aisyah., Lia Hapsari & Debora Herlin, (2005). Induced mutation on jasmine (Jasminum spp.) through gamma irradiation. Journal of Agriculture and Rural Development in the Tropics and Subtropics Beheift, 83, 120 – 127.
Yamaguchi., Hiroyasu Shimizu., Akemi & Degi., Konosuke Morishita. & Toshikazu., (2008). Effects of dose and dose rate of gamma ray irradiation on mutation induction and nuclear DNA content in chrysanthemum. Breeding Scienc, 58, 331-335. 10.1270/jsbbs.58.331.
Section
Research Articles

How to Cite

Efficiency of gamma irradiation and ethyl methane sulphonate in inducing variations in Jasminum auriculatum Vahl. (2022). Journal of Applied and Natural Science, 14(4), 1163-1168. https://doi.org/10.31018/jans.v14i4.3761