##plugins.themes.bootstrap3.article.main##

Naveenkumar T Backiyavathy M R Chitdeshwari T Maheshwari M Saraswathi T Lakshmanan A

Abstract

The application of Municipal solid waste as compost (MSWC) in agricultural fields has become one of the most common practices. Besides its benefits, it poses some harmful effects on soil, as it increases the heavy metal content in MSWC of the soil. It is necessary to find a way to reduce the bioavailability of heavy metals in MSWC  before its application into the soil. This study aimed at exploring the efficiency of zeolite as an immobilizer to dwindle heavy metal bioavailability. An incubation experiment was conducted wherein the soil samples were artificially spiked with different rates of MSWC (0, 5, and 10 t ha-1). The zeolite was added to the spiked soil at 5 different levels, namely 0, 5, 10, 15, and 20 %, and their effect on bioavailable heavy metal status was observed during different incubation intervals (0, 15. 30, 60, 90, and 120 days). Results unveiled that applying 10% zeolite significantly (P<0.05) reduced the bioavailability of lead (Pb) and nickel (Ni)  to Below the detectable limit (Bdl) in all soil samples. Furthermore, the organic carbon status of soil was also enriched by MSWC and 10% zeolite application. The soil pH slightly increased (7.39) with applying 10% zeolite resulting in the immobilization of heavy metals. Hence, 10% zeolite application was one of the most effective immobilizers in eliminating the bioavailability of heavy metals. Therefore, it can be concluded that mixing zeolite with MSWC before applying it to crop fields can reduce the heavy metal overload in soil. Hence, this study highlights the potential of zeolite as an effective choice in dwindling the soil's bioavailability of heavy metal content.

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Heavy metals, Immobiliser, Municipal Solid Waste Compost (MSWC), Zeolite

References
Almendro-Candel, M. B., Navarro-Pedreño, J., Lucas, I. G., Zorpas, A. A., Voukkali, I. & Loizia, P. (2019). The use of composted municipal solid waste under the concept of circular economy and as a source of plant nutrients and pollutants. Municipal Solid Waste Management, 33-50. DOI: 10.5772/intechopen.83386
Argun, M. E. (2008). Use of clinoptilolite for the removal of nickel ions from water: kinetics and thermodynamics. Journal of Hazardous Materials, 150(3), 587-595. DOI: 10.1016/j.jhazmat.2007.05.008
Aslam, M. A., Aziz, I., Shah, S. H., Muhammad, S., Latif, M. & Khalid, A. (2021). Effects of biochar and zeolite integrated with nitrogen on soil characteristics, yield, and quality of maize (Zea mays L.). Pakisthan Journal of Botany, 53(6), 2047-2057. DOI:10.30848/PJB2021-6(27)
Azogh, A., Marashi, S. K. & Babaeinejad, T. (2021). Effect of zeolite on absorption and distribution of heavy metal concentrations in roots and shoots of wheat under soil contaminated with weapons. Toxin Reviews, 40(4), 1301-1307.DOI:10.1080/15569543.2019.1684949
Bardos, P. (2004). Composting of mechanically segregated fractions of municipal solid waste–a review. Falfield, Bristol: Sita Environmental Trust.
Belviso, C. (2020). Zeolite for potential toxic metal uptake from contaminated soil: A brief review. Processes, 8(7), 820.DOI:10.3390/pr8070820
Bouzaiane, O., Jedidi, N. & Hassen, A. (2014). Microbial biomass improvement following municipal solid waste compost application in agricultural soil. Composting for sustainable agriculture, 199-208. DOI:10.1007/978-3-319-08004-8_10
Cairo, P. C., de Armas, J. M., Artiles, P. T., Martin, B. D., Carrazana, R. J. & Lopez, O. R. (2017). Effects of zeolite and organic fertilizers on soil quality and yield of sugarcane. Australian Journal of Crop Science, 11(6), 733-738. DOI: 10.3316/informit.045494473847987
Chukwuji, M. A. I., Nwajei, G. E. & Osakwe, S. A. (2005). Recycling waste in agriculture: Efficacy of composting in ameliorating trace metal availability and soil borne pathogens. European Journal of Scientific Research, 11(4), 571-577.
Contin, M., Miho, L., Pellegrini, E., Gjoka, F. & Shkurta, E. (2019). Effects of natural zeolites on ryegrass growth and bioavailability of Cd, Ni, Pb, and Zn in an Albanian contaminated soil. Journal of Soils and Sediments, 19(12), 4052-4062. DOI: 10.1007/s11368-019-02359-7
Dada, O. A. & Kutu, F. R. (2022). Bioavailability and health risk assessment of potentially toxic elements in popcorn kernel from sandy loam Ferric Luvisol amended with municipal solid waste compost. Environmental Geochemistry and Health, 44(8), 2389-2405.DOI: 10.1007/s10653-021-01020-y
Elboughdiri, N. (2020). The use of natural zeolite to remove heavy metals Cu (II), Pb (II), and Cd (II), from industrial wastewater. Cogent Engineering, 7(1), 1782623.DOI: 10.1080/23311916.2020.1782623.
El-Eswed, B. I., Yousef, R. I., Alshaaer, M., Hamadneh, I., Al-Gharabli, S. I. & Khalili, F. (2015). Stabilization/solidification of heavy metals in kaolin/zeolite-based geopolymers. International journal of mineral processing, 137, 34-42.DOI: 10.1016/j.minpro.2015.03.002
Jackson, M. L. 1973. Soil chemical analysis. Prentic Hall (India) Pvt. Ltd. New Delhi.
Kabasiita, J. K., Opolot, E. & Malinga, G. M. (2022). Quality and Fertility Assessments of Municipal Solid Waste Compost Produced from Cleaner Development Mechanism Compost Projects: A Case Study from Uganda. Agriculture, 12(5), 582. DOI: 10.3390/agriculture12050582
Li, H., Shi, W. Y., Shao, H. B. & Shao, M. A. (2009). The remediation of the lead-polluted garden soil by natural zeolite. Journal of Hazardous Materials, 169(1-3), 1106-1111. DOI: 10.1016/j.jhazmat.2009.04.067
Lim, S. L., Wu, T. Y., Lim, P. N. & Shak, K. P. Y. (2015). The use of vermicompost in organic farming: overview, effects on soil and economics. Journal of the Science of Food and Agriculture, 95(6), 1143-1156. DOI: 10.1002/jsfa.6849
Machado, C. R. & Hettiarachchi, H. (2020). Composting as a municipal solid waste management strategy: lessons learned from Cajicá, Colombia. In Organic waste composting through nexus thinking (pp. 17-38). Springer, Cham.
Mahabdi, A. A., Hajabbasi, M. A., Khademi, H. & Kazemian, H. (2007). Soil cadmium stabilization using an Iranian natural zeolite. Geoderma, 137(3-4), 388-393. DOI: 10.1016/j.geoderma.2006.08.032
MOHUA (2021) http://mohua.gov.in Accessed on :1st July,2022
National Household Hazardous Waste Forum (2000). Issues surrounding the collection and identification of post-consumer batteries.
Nigussie, A., Kuyper, T. W. & de Neergaard, A. (2015). Agricultural waste utilisation strategies and demand for urban waste compost: evidence from smallholder farmers in Ethiopia. Waste Management, 44, 82-93. DOI: 10.1016/j.wasman.2015.07.038
Ou, J., Li, H., Yan, Z., Zhou, Y., Bai, L., Zhang, C., ... & Chen, G. (2018). In situ Immobilization of toxic metals in soil using Maifan stone and illite/smectite clay. Scientific reports, 8(1), 1-9.DOI: 10.1038/s41598-018-22901-w
Panuccio, M. R., Sorgonà, A., Rizzo, M. & Cacco, G. (2009). Cadmium adsorption on vermiculite, zeolite and pumice: Batch experimental studies. Journal of Environmental Management, 90(1), 364-374. DOI: 10.1016/j.jenvman.2007.10.005
Radziemska, M., Bęś, A., Gusiatin, Z. M., Majewski, G., Mazur, Z., Bilgin, A., ... & Brtnický, M. (2020). Immobilization of potentially toxic elements (PTE) by mineral-based amendments: Remediation of contaminated soils in post-industrial sites. Minerals, 10(2), 87.DOI: 10.3390/min10020087 
Rajaie, M. & Tavakoly, A. R. (2016). Effects of municipal waste compost and nitrogen fertilizer on growth and mineral composition of tomato. International Journal of Recycling of Organic Waste in Agriculture, 5(4), 339-347. DOI: 10.1007/s40093-016-0144-4
Selvi, A., Rajasekar, A., Theerthagiri, J., Ananthaselvam, A., Sathishkumar, K., Madhavan, J. & Rahman, P. K. (2019). Integrated remediation processes toward heavy metal removal/recovery from various environments-a review. Frontiers in Environmental Science, 7, 66. DOI: 10.3389/fenvs.2019.00066
Shi, W. Y., Shao, H. B., Li, H., Shao, M. A.. & Du, S. (2009). Progress in the remediation of hazardous heavy metal-polluted soils by natural zeolite. Journal of Hazardous Materials, 170(1), 1-6.DOI: 10.1016/j.jhazmat.20 09.04.097
Topcuoğlu, B. (2016). Heavy metal mobility and bioavailability on soil pollution and environmental risks in greenhouse areas. International Journal of advances in agricultural and environmental engineering, 3(1), 208. DOI: 10.15242/IJAAEE.ER0416020
Truc, M. T. & Yoshida, M. (2011). Effect of zeolite on the decomposition resistance of organic matter in tropical soils under global warming. World Academy of Science, Engineering and Technology, 59, 1664-1668.
US Environmental Protection Agency (1979). Methods for chemical analysi of water and wastes. EPA-600/4-79-020.
Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil science, 37(1), 29-38.
Weber, J., Kocowicz, A., Bekier, J., Jamroz, E., Tyszka, R., Debicka, M. ... & Kordas, L. (2014). The effect of a sandy soil amendment with municipal solid waste (MSW) compost on nitrogen uptake efficiency by plants. European Journal of Agronomy, 54, 54-60. DOI: 10.1016/j.eja.20 13.11.014
Wyszkowski, M. (2019). Soil Contamination with Copper and its Effect on Selected Soil Properties After Applying Neutralizing Substances. Polish Journal of Environmental Studies, 28(4). DOI: 10.15244/pjoes/90357
Section
Research Articles

How to Cite

Influence of zeolite on heavy metal immobilization in municipal solid waste compost contaminated soil. (2022). Journal of Applied and Natural Science, 14(3), 971-977. https://doi.org/10.31018/jans.v14i3.3741