##plugins.themes.bootstrap3.article.main##

Puyam Devanda Singh Kewat Sanjay Kumar https://orcid.org/0000-0003-2951-1835 Vinod Prasad Khanduri

Abstract

Clerodendrum colebrookianum Walp. and Clerodendrum infortunatum L. are well known for their medicinal uses in treating various human ailments traditionally. Pollen biology study was done in both plant species to decipher pollen viability, in vitro pollen germination, and pollen storage in varied temperature conditions. Pollen viability tests was done by 2, 3, 5-triphenyl tetrazolium chloride (TTC test) for which pollen grains were collected at the anthesis stage that ascertained high viability, ranged between 71.97%±4.30 % in C. colebrookianum and 81.63%±3.23 in C. infortunatumIn vitro pollen germination was conducted under different hormones (IBA, IAA, GA3, and Kinetin) with concentrations of 100 mg L-1, 200 mg L-1 and 300 mg L-1. Highest germination percentage of 52.10±5.30% and 61.91±1.76% in GA3 (200 mg L-1) was the most suitable growth hormone concentration for inducing in vitro pollen germination in both Clerodendrum species. Statistically, the response of all the concentrations of treatments, sucrose, and hormones, with their time on in vitro pollen germination of C. colebrookianum and C. infortunatum was found significantly different (p<0.05). In contrast, non-significant differences were recorded for in vitro pollen germination between the medicinal plant species. Pollen storage under temperature gradient conditions exhibited a similar trend in the viability for both C. colebrookianum, and C. infortunatum, i.e., the pollen remained viable up to 28 days at -20°C and 6°C, respectively. This study will be helpful in future breeding, hybridization, and conservation efforts for both the Clerodendrum species.   

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Clerodendrum colebrookianum, Hormones, Medicinal uses, Pollen germination

References
Abdelgadir, H. A., Johnson, S. D. & Van Staden, J. (2012). Pollen viability, pollen germination and pollen tube growth in the biofuel seed crop Jatropha curcas (Euphorbiaceae). South African Journal of Botany, 79, 132-139. doi.org/10.1016/j.sajb.2011.10.005
Arya, H., Syed, S. B., Singh, S. S., Ampasala, D. R. & Coumar, M. S. (2018). In silico investigations of chemical constituents of Clerodendrum colebrookianum in the anti-hypertensive drug targets: Rock, Ace, and Pde5. Interdisciplinary Sciences: Computational Life Sciences, 10 (4), 792-804. doi.org/10.1007/s12539-017-0243-6
Bhattacharjee, D., Das, A., Das, S. K. & Chakraborthy, G. S. (2011). Clerodendrum infortunatum Linn.: A review. J Adv Pharm Healthcare Res, 1(3), 82-85. http://www.japh r.iaphp.in
Brewbaker, J. L. & Kwack, B. H. (1963). The essential role of calcium ion in pollen germination and pollen tube growth. American Journal of Botany, 50 (9), 859-865. doi.org/10.1002/j.1537-2197.1963.tb06564.x
Buchner, L., Eisen, A. K., Sikoparija, B. & Jochner-Oette, S. (2022). Pollen viability of fraxinus excelsior in storage experiments and investigations on the potential effect of long-range transport. Forests, 13 (4), 600. doi.org/10.33 90/f13040600
Dafni, A. & Firmage, D. (2000). Pollen viability and longevity: practical, ecological and evolutionary implications. In Pollen and pollination, (113-132). Springer, Vienna. doi.org/10.1007/978-3-7091-6306-1_6
Das, A., Chaudhuri, D., Ghate, N. B., Panja, S., Chatterjee, A. & Mandal, N. (2015). Protective effect of Clerodendrum colebrookianum leaves against iron-induced oxidative stress and hepatotoxicity in Swiss albino mice. Indian Journal of Experimental Biology, 53, 281-291. nopr.niscpr.res.in/handle/123456789/31439
Dong, S. & Beckles, D. M. (2019). Dynamic changes in the starch-sugar interconversion within plant source and sink tissues promote a better abiotic stress response. Journal of Plant Physiology, 234, 80-93. doi.org/10.1016/j.jplph.2019.01.007
Du, G., Xu, J., Gao, C., Lu, J., Li, Q., Du, J. & Sun, X. (2019). Effect of low storage temperature on pollen viability of fifteen herbaceous peonies. Biotechnology Reports, 21, e00309. doi.org/10.1016/j.btre.2019.e00309
Dziurka, K., Dziurka, M., Warchoł, M., Czyczyło-Mysza, I., Marcińska, I., Noga, A., Kamila, K. & Skrzypek, E. (2019). Endogenous phytohormone profile during oat (Avena sativa L.) haploid embryo development. In Vitro Cellular & Developmental Biology-Plant, 55(2), 221-229. doi.org/10.1007/s11627-019-09967-5
Engin, H. & Gokbayrak, Z. (2016). Effects of brassinosteroid, naphthalene acetic acid and gibberellic acid on in vitro pollen germination of bisexual and functional male flowers of pomegranate cultivars. COMU Ziraat Fakültesi Dergisi, 45.
Fragallah, S. A. D. A., Lin, S., Li, N., Ligate, E. J. & Chen, Y. (2019). Effects of sucrose, boric acid, pH, and incubation time on in vitro germination of pollen and tube growth of chinese fir (Cunnighamial lanceolata L.). Forests, 10 (2), 102. doi.org/10.3390/f10020102
Gogoi, P. & Nath, N. (2021). Indigenous knowledge of ethnomedicinal plants by the Assamese community in Dibrugarh District, Assam, India. Journal of Threatened Taxa, 13 (5), 18297-18312. orcid.org/0000-0003-3429-6252
Gokbayrak, Z. & Engin, H. A. K. A. N. (2015). Effect of plant growth regulators on in vitro pollen germination of grapevine cultivars. In III Balkan Symposium on Fruit Growing 1139 (405-408). doi.org/10.17660/ActaHortic.2016.1139.70
Hao, Q., Xu, L., Wang, H., Liu, Q. & Wang, K. (2022). Evaluation of pollen viability, stigma receptivity, and the cross barrier between tropical and hardy water lily cultivars. Flora, 290, 152046. doi.org/10.1016/j.flora.2022.15 2046
Helen, R. L., Jayesh, K., Syama, S. & Latha, M. S. (2021). Secondary metabolites from Clerodendrum Infortunatum L.: their bioactivities and health benefits. In Health Benefits of Secondary Phytocompounds from Plant and Marine Sources (pp. 39-60). 1st Ed. New York, Apple Academic Press. doi.org/10.1201/9781003019602
Jamir, K. & Tsurho, K. (2016). Documentation of medicinal plants and its uses by Phom tribe of Longleng district, Nagaland. Journal of Medicinal Plant Studies, 4(6), 167-172.
Jaskani, M. J. & Naqvi, S. A. (2017). Storage and viability assessment of date palm pollen. In Date Palm Biotechnology Protocols Volume II (3-13). Humana Press, New York, NY. doi.org/10.1007/978-1-4939-7159-6_1
Kalita, J., Singh, S. S. & Khan, M. L. (2012). Clerodendrum colebrookianum Walp.: A potential folk medicinal plant of North East India. Asian Journal of Pharmaceutical & Biological Research, 2(4), 256-261.
Kormutak, A., Bolecek, P., Galgóci, M. & Gomory, D. (2021). Longevity and germination of Juniperus communis L. pollen after storage. Scientific Reports, 11(1), 1-8. doi.org/10.1038/s41598-021-90942-9
Kovaleva, L. V., Voronkov, A. S., Zakharova, E. V., Minkina, Y. V., Timofeeva, G. V. & Andreev, I. M. (2016). Exogenous IAA and ABA stimulate germination of petunia male gametophyte by activating Ca2+-dependent K+-channels and by modulating the activity of plasmalemma H+-ATPase and actin cytoskeleton. Russian Journal of Developmental Biology, 47(3), 109-121. doi.org/10.1134/S1062360416030036
Kovaleva, L. V., Zakharova, E. V., Minkina, Y. V., Timofeeva, G. V. & Andreev, I. M. (2005). Germination and in vitro growth of petunia male gametophyte are affected by exogenous hormones and involve the changes in the endogenous hormone level. Russian Journal of Plant Physiology, 52(4), 521-526. doi.org/10.1007/s11183-005-0077-7
Kshetri, P., Tamreihao, K., Roy, S. S., Singh, T. S., Sharma, S. K. & Ansari, M. A. (2022). Ethnomedicinal plants of north eastern Himalayan region of India to combat hypertension. In Medicinal Plants (pp. 461-483). 1st Ed. New York, Apple Academic Press. doi.org/10.1201/97810 03277408
Li, Y., Tang, G. & Luo, F. (2015). Studies on pollen viability and cross-compatibility of four species of Hibiscus. Journal of Nanjing Forestry University (Natural Sciences Edition), 39(2), 183-186. doi.org/10.3969/j.issn.1000-2006.2015.02.032
Lin, Y., Wang, Y., Iqbal, A., Shi, P., Li, J., Yang, Y. & Lei, X. (2017). Optimization of culture medium and temperature for the in vitro germination of oil palm pollen. Scientia Horticulturae, 220, 134-138. doi.org/10.1016/j.scienta.201 7.03.040
Lokesh, D. & Amitsankar, D. (2012). Evaluation of mechanism for antihypertensive action of Clerodendrum colebrookianum Walp., used by folklore healers in north-east India. Journal of Ethnopharmacology, 143(1), 207-212. doi.org/10.1016/j.jep.2012.06.025
Maita, S. & Sotomayor, C. (2015). The effect of three plant bioregulators on pollen germination, pollen tube growth and fruit set in almond [Prunus dulcis (Mill.) DA Webb] cvs. Non Pareil and Carmel. Electronic Journal of Biotechnology, 18(5), 381-386. doi.org/10.1016/j.ejbt.2015.07.004
Manonmani, R. & Mekala, R. (2016). Pollen morphology, viability, germination and tube growth of some plant species. Ecology, 3(4), 5-6. doi.10.20959/wjpr20167-6437
Mao, A. A., Wetten, A., Fay, M. & Caligari, P. D. S. (1995). In vitro propagation of Clerodendrum colebrookianum Walp., a potential natural anti-hypertension medicinal plant. Plant Cell Reports, 14(8), 493-496. doi.org/10.1007/BF00232781
Marchioretto, L. D. R., De Rossi, A., do Amaral, L. O. & de Souza Ribeiro, A. M. A. (2019). Efficacy and mode of action of blossom thinners on ‘Fuji More’apple trees. Scientia Horticulturae, 246, 634-642. doi.org/10.101 6/j.scienta.2018.11.039
Marques, J. E. N. (2018). Assays of In vitro germination of kiwi pollen (Doctoral dissertation, Universidade de Coimbra). hdl.handle.net/10316/86144
Mesnoua, M., Roumani, M. & Salem, A. (2018). The effect of pollen storage temperatures on pollen viability, fruit set and fruit quality of six date palm cultivars. Scientia Horticulturae, 236, 279-283. doi.org/10.1016/j.scienta.2018.0 3.053
Murtem, G. & Chaudhry, P. (2016). An ethnobotanical study of medicinal plants used by the tribes in upper Subansiri district of Arunachal Pradesh, India. American journal of ethnomedicine, 3(3), 35-49. www.ajethno.com
Naik, A., Akhtar, S., Chattopadhyay, A., Thapa, U. & Hazra, P. (2016). In vitro teasle gourd pollen germination and pollen tube development as affected by sucrose, boric acid, and inorganic salts. International Journal of Vegetable Science, 22(2), 209-216. doi.org/10.1080/19315 260.2015.1008665
Nandi, S. & Mawkhlieng Lyndem, L. (2016). Clerodendrum viscosum: traditional uses, pharmacological activities and phytochemical constituents. Natural Product Research, 30(5), 497-506. doi.org/10.1080/14786 419.2015.1025229
Patel, E. & Mankad, A. (2015). Sucrose needs for pollen germination of Impatiens balsamina L. International Journal of Innovative Research in Sci, Eng. and Tech, 4(10), 10242-10244. doi:10.15680/IJIRSET.2015.0410104
Rej, S., Dutta, M., Jamal, S., Das, S. & Chatterjee, S. (2014). Study of phytochemical constituents and antibacterial activity of Clerodendrum infortunatum. Asian Journal of Research in Pharmaceutical Science, 4(4), 187-195.
Rico, Y. & Reyes-Estanislao, L. (2019). Pollen viability and germinability of putative Bursera hybrids (section Bullockia; Burseraceae) in Mexico. Acta Botánica Mexicana, (126). doi.org/10.21829/abm126.2019.1435
Saha, S., Mukherjee, A., Biswas, S., Choudhury, D., Saha, J., Pal, S., Sarkar, M. & Kole, R. K. (2018). Formulation and chemical characterization of Clerodendrum infortunatum leaf extract in relation to anti-fungal activity. Heliyon, 4(12), e01047. doi.org/10.1016/j.heliyon.2018.e 01047
Sanjay Kumar, K., Prasad Khanduri, V., Kar, K., Mohan Sharma, C. & Kumar Riyal, M. (2016). Effect of growth regulators and time on in vitro pollen germination in three ornamental tropical tree species. Journal of Agricultural Science and Technology, 18(5), 1247-1255. doi.jast.modares.ac.ir/article-23-2964-en.html
Sarkar, T., Sarkar, S. K. & Vangaru, S. (2018). Effect of sucrose and boric acid on in-vitro pollen germination of guava (Psidium guajava) varieties. Advances Research, 15, 1-9. doi:10.9734/AIR/2018/41145
Shekari, A., Nazeri, V. & Shokrpour, M. (2016 a). Influence of boric acid, sucrose and temperature on the germination of Leonurus cardiaca L., pollen. International Journal of Farming and Allied Sciences, 5, 363-366.
Shekari, A., Nazeri, V. & Shokrpour, M. (2016 b). Pollen viability and storage life in Leonurus cardiaca L. Journal of Applied Research on Medicinal and Aromatic Plants, 3(3), 101-104. doi.org/10.1016/j.jarmap.2016.02.004
Shivanna, K. R. (2019). Pollen biology and biotechnology, 316. CRC Press, 1 edition, Boca Raton. doi.org/10.1201/9780429187704
Shivanna, K. R. & Rangaswamy, N. S. (2012). Pollen biology: a laboratory manual. Springer Science & Business Media.
Sidhu, R. K. (2019). Pollen storage in vegetable crops: a review. Journal of Pharmacognosy and Phytochemistry, SP1, 599-603.
Soares, T. L., de Souza, E. H., Sampaio, L. F. S., de Carvalho Costa, M. A. P., e Silva, S. D. O. & dos Santos-Sejero, J. A. (2015). Effect of collection time on the viability of banana pollen grains. African Journal of Biotechnology, 14(14), 1207-1214. doi.org/10.5897/AJB2015.14449
Soares, T. L., Jesus, O. N. D., Santos-Serejo, J. A. D. & Oliveira, E. J. D. (2013). In vitro pollen germination and pollen viability in passion fruit (Passiflora spp.). Revista Brasileira de Fruticultura, 35 (4), 1116-1126. doi.org/10.1590/S0100-29452013000400023
Sulusoglu, M. & Cavusoglu, A. (2014). In vitro pollen viability and pollen germination in cherry laurel (Prunus laurocerasus L.). The Scientific World Journal, 2014. doi.org/10.1155/2014/657123
Tuinstra, M. R. & Wedel, J. (2000). Estimation of pollen viability in grain sorghum. Crop Science, 40 (4), 968-970. doi.org/10.2135/cropsci2000.404968x
Usman, M., Khan, M. S., Khan, M. M., Jaskani, M. J. & Khan, A. S. (2022). Development of an efficient and reproducible in vitro regeneration system in carrot (T-29). Pakistan Journal of Botany, 54(3), 943-951. doi.org/1 0.30848/PJB2022-3(10)
Xiong, H., Zou, F., Yuan, D., Zhang, X. & Tan, X. (2016). Orthogonal test design for optimising the culture medium for in vitro pollen germination of feijoa (Acca sellowiana cv. Unique). New Zealand Journal of Crop and Horticultural Science, 44(3), 192-202. doi.org/10.1080/01140671.2 016.1174945
Yadav, A., Verma, P. K., Chand, T. & Bora, H. R. (2018). Ethno-medicinal knowledge of Clerodendrum L. among different tribes of Nambor reserve forest, Assam, India. Journal of Pharmacognosy and Phytochemistry, 7(5), 1567-1570.
Yaman, M. & Turan, S. (2021). Determination of pollen viability and germination ratios in mersin ecology of some early apricot. Current Trends in Natural Sciences, 10(19), 166-169. doi.org/10.47068/ctns.2021.v10i19.021
Yang, H., Jiang, B., Hou, A. J., Lin, Z. W. & Sun, H. D. (2000). Colebroside A, a new diglucoside of fatty acid ester of glycerin from Clerodendrum colebrookianum. Journal of Asian Natural Products Research, 2 (3), 177-185. doi.org/10.1080/10286020008039909
Yang, R., Wang, J., Gao, W., Jiang, Y., Su, J., Sun, D. & He, G. (2021). Research on the reproductive biological characteristics of Amomum villosum Lour. and Amomum longiligulare TL Wu. Plos One, 16(8), e0250335. doi.org/10.1371/journal.pone.0250335
Youmbi, E., Tabi, K., Ebongue, N., Frank, G., Tonfack, L. B. & Ntsomboh, G. (2015). Oil palm (Elaeis guineensis Jacq.) improvement: Pollen assessment for better conservation and germination. Journal of Oil Palm Research, 27(3), 212-9.
Zeng, L., Gao, M. & Liao, W. (2018). Effects of Asc and IBA on germination and growth of Nuomici litchi pollen in different batches. Journal of Southern Agriculture, 49(2), 301-306.
Section
Research Articles

How to Cite

Pollen storage, viability and effect of growth hormones on in vitro pollen germination in two medicinal plants (Clerodendrum colebrookianum Walp. and Clerodendrum infortunatum L.) of the tropical moist forest of North-east India. (2022). Journal of Applied and Natural Science, 14(3), 999-1008. https://doi.org/10.31018/jans.v14i3.3737