Dysfunctions of liver and behavioural disorders of females rats suffering from malnutrition: Physiological and histological information as a model of animal anorexia nervosa disease
Article Main
Abstract
Anorexia nervosa disease is an eating deficiency that occurs around 1 per 100 individuals. The present study was conducted to assess the effects of malnutrition (animal anorexia nervosa models) via removing certain elements from food on liver functions and behaviours of female rats. Eighteen Females of rats were divided into three groups: Control, in which food intake quantity was 25 g /day, moderately food-restricted Group, in which food intake quantity was 15 g /day, and severe food-restricted Group, in which food intake quantity was 5 g /day, for 90 days. Physiological parameters, liver histopathological analysis, and the behaviour measurement by multiple T maze tests were examined. All food-restricted groups observed a significant increase (p<0.05) in aminotransferase, Malondialdehyde and lactate dehydrogenase levels. Antioxidant activity, acid phosphatase, hepatic protein, glycogen and serotonin levels were significantly (p<0.05) decreased in all food-restricted groups. The hyperactivity behaviour appeared as a feature of restricted rats. Histopathological examinations indicated a marked alteration in the hepatocyte with features of autophagy in the restricted Group. Food-restriction (animal anorexia nervosa model) in rats caused disorders in hepatic aminotransferase and serotonin levels and antioxidant activity in addition to hyperactivity behaviours with changes in the liver histological structure in the restricted Group. The study focused on the effect deficiency in essential nutrients needed by the body may have side effects on liver functions and behavioural activity of the animals linked with food searching was measured by multiple T maze tests.
Article Details
Article Details
Animal anorexia, Antioxidant, Behavioural test, Female rat, Liver enzymes, Malnutrition, Serotonin
Celik, M., Sermatov, K., Abuhandan, M., Zeyrek, D., Kocyigit, A. & Iscan, A., (2012). Oxidative status and DNA damage in chidren with marasmic malnutrition. Journal of Clinical Laboratory Analysis, 26(3), 161–166. doi: 10.100 2/jcla.21505
CHabuk, A-H. H., Al-Saadi, H. K. Z. & Al-Hamairy, A. K., (2016). Effect of the Experimental Infection withToxoplasma gondii on some Biochemical aspects and Histological Changes for the Liver and Spleen in Female Rats. International Journal of PharmTech Research, 5(11), 142-150.
Cornide-Petronio, M. E., Álvarez-Mercado, A. I., Jiménez-Castro, M. B. & Peralta, C. (2020). Current knowledge about the effect of nutritional status, supplemented nutrition diet, and gut microbiota on hepatic ischemia-reperfusion and regeneration in liver surgery. Nutrients, 12(2), 284. doi.org/10.3390/nu12020284.
De Caprio, C., Alfano, A., Senatore, I., Zarrella, L., Pasanisi, F. & Contaldo, F. (2006). Severe acute liver damage in anorexia nervosa: two case reports. Nutrition, 22(5), 572–575. doi.org/10.1016/j.nut.2006.01.003
Dietze, S., Lees, KR., Fink, H., Brosda, J. & Voigt J-P. (2016). Food deprivation, body weight loss and anxiety-related behaviour in rats. Animals, 6(4),1-14. doi:10.3390/ani6010004.
Dhanda, S. & Sandhir, R. (2015). Role of dopaminergic and serotonergic neurotransmitters in behavioral alterations observed in rodent model of hepatic encephalopathy. Behavioural brain research, 286, 222-235. doi.org/10.1016/j.bbr.2015.01.042.
Gibson-Corley, K. N., Olivier, A. K. & Meyerholz, D. K. (2013). Principles for valid histopathologic scoring in research. Veterinary Pathology, 50(6), 1007–1015. 10.1177/0300985813485099.
Hanachi, M., Melchior, J. C. & Crenn, P. (2013). Hypertransaminasemia in severely malnourished adult anorexia nervosa patients: risk factors and evolution under enteral nutrition. Clinical Nutrition, 32(3), 391–395. doi.org/10.1016/j.clnu.2012.08.020
Harris, R. H., Sasson, G. & Mehler, P. S. (2013). Elevation of liver function tests in severe anorexianervosa. International Journal of Eating Disorders, 46(4), 369–374. doi.org/10.1002/eat.22073.
Jáuregui-Lobera, I., Ezquerra-Cabrera, M., Carbonero-Carreño, R. & Ruiz-Prieto, I. (2013). Weight misperception, self-reported physical fitness, dieting and some psychological variables as risk factors for eating disorders. Nutrients, 5(11), 4486–4502. doi.org/10.3390/nu5114486.
Kheloufi, M., Boulanger, C. M., Durand, F. & Rautou, P.-E. (2014). Liver autophagy in anorexia nervosa and acute liver injury. BioMed Research International, 2014,1-12. doi.org/10.1155/2014/701064.
Kim, S. F. (2012). Animal models of eating disorders. Neuroscience, 1( 211), 2–12. doi: 10.1016/j.neuroscience.2012.03.024.
Ko, M., Kamimura, K., Owaki, T., Nagoya, T., Sakai, N., Nagayama, I. & Terai, S. (2021). Modulation of serotonin in the gut-liver neural axis ameliorates the fatty and fibrotic changes in non-alcoholic fatty liver. Disease models & mechanisms, 14(3), 1-12. doi.org/10.1242/dmm.048922.
Koga, A., Murakami, M., Kurihra, Y., Ishida, T., Hosokawa, M., Tamura, N. & Kawai, K. (2021). Portal hypertension in prolonged anorexia nervosa with laxative abuse: a case report with liver and kidney biopsy data. Eating and Weight Disorders-Studies on Anorexia, Bulimia and Obesity, 26(2), 733–738. doi.org/10.1007/s40519-020-00902-x.
Koga, A., Toda, K., Tatsushima, K., Matsuubayashi, S., Tamura, N., Imamura, M. & Kawai, K. (2019). Portal hypertension in prolonged anorexia nervosa with laxative abuse: A case report of three patients. International Journal of Eating Disorders, 52(2), 211–215. 10.1002/eat.23007.
Lennerz, J. K., Hurov, J. B., White, L. S., Lewandowski, K. T., Prior, J. L., Planer, G. J. & Piwnica-worms, H. (2010). Loss of Par-1a / MARK3 / C-TAK1 Kinase Leads to Reduced Adiposity, Resistance to Hepatic Steatosis, and Defective Gluconeogenesis. Molecular and cellular biology, 30(21), 5043-5056.
Mai-siyama, I. B., Isyaku, M. U., Atiku, I. A., Muhammad, A. S. & Onazi, H. U. (2017). The effect of starvation on blood parameters, electrolytes and liver enzymes in albino rats. Dutse J. Pure and Appl. Sci, 3(2), 421–427.
Marczuk-Krynicka, D., Hryniewiecki, T., Piątek, J. & Paluszak, J. (2003). The effect of brief food withdrawal on the level of free radicals and other parameters of oxidative status in the liver. Medical Science Monitor, 9(3), BR131–BR135.
Marks, K. A., Marvyn, P. M., Henao, J. J. A., Bradley, R. M., Stark, K. D. & Duncan, R. E. (2015). Fasting enriches liver triacylglycerol with n-3 polyunsaturated fatty acids: implications for understanding the adipose–liver axis in serum docosahexaenoic acid regulation. Genes & Nutrition, 10(6), 1–14. doi.org/10.1007/s12263-015-0490-2.
Mojahed, L. S., Mehdi, S., Mohammadi, M. M. & Nazifi, S. (2016). Short Period Starvation in Rat: The Effect of Aloe Vera Gel Extract on Oxidative Stress Status Ion. İstanbul Üniversitesi Veteriner Fakültesi Dergisi, 43(1), 32–38.
Namazi, F., Omidi, A., Abbasi, S., Afsar, M., Honarmand, M. & Nazifi, S. (2016). Starvation and refeeding in rats: effect on some parameters of energy metabolism and electrolytes and changes of hepatic tissue. Pesquisa Veterinária Brasileira, 36, 101–105. 10.1590/S0100-736X2016001300015.
Narayanan, V., Gaudiani, J. L., Harris, R. H. & Mehler, P. S. (2010). Liver function test abnormalities in anorexia nervosa—cause or effect. International Journal of Eating Disorders, 43(4), 378–381. doi.org/10.1002/eat.20690.
Oliveras-López, M.-J., Ruiz-Prieto, I., Bolaños-Ríos, P., De la Cerda, F., Martín, F. & Jáuregui-Lobera, I. (2015). Antioxidant activity and nutritional status in anorexia nervosa: effects of weight recovery. Nutrients, 7(4), 2193–2208. doi:10.3390/nu7042193.
Oudman, E., Wijnia, J. W., Oey, M. J., van Dam, M. J. & Postma, A. (2018). Preventing Wernicke’s encephalopathy in anorexia nervosa: A systematic review. Psychiatry and Clinical Neurosciences, 72(10), 774–779. doi:10.1111/pcn.12735.
Rautou, P., Cazals–Hatem, D., Moreau, R., Francoz, C., Feldmann, G., Lebrec, D. & Durand, F. (2008). Acute liver cell damage in patients with anorexia nervosa: a possible role of starvation-induced hepatocyte autophagy. Gastroenterology, 135(3), 840–848.
Rosen, E., Bakshi, N., Watters, A., Rosen, H. R. & Mehler, P. S. (2017). Hepatic complications of anorexia nervosa. Digestive Diseases and Sciences, 62(11), 2977–2981. DOI 10.1007/s10620-017-4766-9.
Sadowska, J., Dudzińska, W., Skotnicka, E., Sielatycka, K. & Daniel, I.( 2019). The impact of a diet containing sucrose and systematically repeated starvation on the oxidative status of the uterus and ovary of rats. Nutrients, 11(1544), 2-14. doi:10.3390/nu11071544.
Schalla, M. A. & Stengel, A. (2019). Activity based anorexia as an animal model for anorexia nervosa–a systematic review. Frontiers in nutrition, 6 (69), 1-24. doi.org/10.3389/fnut.2019.00069.
Siegfried, Z., Berry, E. M., Hao, S. & Avraham, Y. (2003). Animal models in the investigation of anorexia. Physiology & Behaviour , 79(1), 39–45. doi:10.1016/S0031-9384(03)00103-3.
Sylvie, G., Marion, K., Yvon, L. M., Jean-Patrice, R. & Criscuolo, F. (2012). Of the importance of metabolic phases in the understanding of oxidative stress in prolonged fasting and refeeding. Physiological and Biochemical Zoology, 85(4), 415–420. doi.org/10.1086/666364.
van den Berg, E., Houtzager, L., de Vos, J., Daemen, I., Katsaragaki, G., Karyotaki, E. & Dekker, J. (2019). Meta‐analysis on the efficacy of psychological treatments for anorexia nervosa. European Eating Disorders Review, 27(4), 331–351. doi.org/10.1002/erv.2683.
Wasselin, T., Zahn, S., Maho, Y. Le, Dorsselaer, A. Van, Raclot, T. & Bertile, F. (2014). Exacerbated oxidative stress in the fasting liver according to fuel partitioning. Proteomics, 14(16), 1905–1921. doi.org/10.1002/pmic.201400051.
Wojciak, R. W. (2014). Alterations of selected iron management parameters and activity in food-restricted female Wistar rats (animal anorexia models). Eating and Weight Disorders-Studies on Anorexia, Bulimia and Obesity, 19(1), 61–68. doi.org/10.1007/s40519-013-0078-z.
Kumar, S. P., Musthafa, M. S., Sharadha, A., & Daniel, G. S. (2010). Histological changes in the hep histological changes in the hepatopancreas of tiger shrimp ancreas of tiger shrimp ancreas of tiger shrimp, penaeus monodon penaeus monodon exposed to sublea exposed to sublea exposed to subleathal concentra thal concentra thal concentrations of lead nitra lead nitrate. Journal of Basic and Applied Biology, 4(1&2), 120-124.
Yousef, M. I., Hendy, H. A. El, El-demerdash, F. M. & Elagamy, E. I. (2002). Dietary zinc deficiency induced-changes in the activity of enzymes and the levels of free radicals , lipids and protein electrophoretic behaviour in growing rats. Toxicology,175, 223–234.
Zhang, M., Song, G. & Minuk, G. Y. (1996). Effects of hepatic stimulator substance, herbal medicine, selenium/vitamin E, and ciprofloxacin on cirrhosis in the rat. Gastroenterology, 110(4), 1150–1155. doi.org/10.1053/gast.1996.v110.pm8613004.
Zhang, K., Li, X., Wang, X., Zheng, H., Tang, S., Lu, L. & Ma, X. (2020). Gut barrier proteins mediate liver regulation by the effects of serotonin on the non-alcoholic fatty liver disease. Current Protein and Peptide Science, 21(10), 978-84. doi.org/10.2174/1389203721666200615171928.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)