Biochemical assessment of renal function and its correlation with iron overloading in different variants of thalassemia
Article Main
Abstract
Thalassemia is a hereditary disorder characterised by changes in organ function and iron overload resulting from multiple blood transfusions, inefficient erythropoiesis, and increased gastrointestinal iron absorption. This study aimed to compare and correlate renal function tests with blood transfusion frequency, annual blood requirement, and ferritin levels in patients with Thalassemia Major, Intermedia, and Minor. Fifty blood samples were collected from each clinically diagnosed patient with thalassemia major, intermedia, and minor at MGM Hospital in Navi Mumbai for complete blood count estimates, serum ferritin, and renal function tests. The frequency of blood transfusions and the annual blood requirement was recorded. The Pearson correlation coefficient was used to examine the relationship. SPSS Software was used to tabulate and process patient data. A p-value of less than 0.001 was regarded as significant. This study included both male (64) and female (84) participants. The major, intermedia, and minor serum ferritin levels were 2212.5 ug/L, 1643 ug/L, and 53.55 ug/L, respectively. Serum creatinine and sodium levels in thalassemia major (27.41 ± 5.31umol/L, 128.02± 4.56 mmol/L, respectively) and intermedia (36.25 ± 6.19 umol/L, 128.96± 4.39 mmol/L respectively) decreased as the frequency of transfusion and serum ferritin level increased. Uric acid levels (361.64 ± 64.83 umol/L) were higher in patients with thalassemia intermedia. Transfusion therapy, required for Major and Intermedia, increases iron overload, which harms organ function and quality of life. Early detection and genetic counselling are necessary for proper thalassemia management.
Article Details
Article Details
Blood Transfusion, Genetic counselling, Iron-overload, Renal function test, thalassemia
Angulo, I. L., Covas, D. T., Carneiro, A. A., Baffa, O., Elias Junior, J. & Vilela, G. (n.d.). Determination of iron-overload in thalassemia by hepatic MRI and ferritin Determinação da sobrecarga de ferro na talassemia pela IRM hepática e ferritina. Retrieved July 23, 2022, from Scielo.br website: https://www.scielo.br/j/rbhh/a/HSgYgjfLyLXJLRRm9NYBpYR/?lang=en&format=pdf
Baig, S. M., Azhar, A., Hassan, H., Baig, J. M., Aslam, M., Ud Din, M. A., … Zaman, T. (2006). Prenatal diagnosis of beta-thalassemia in Southern Punjab, Pakistan. Prenatal Diagnosis, 26(10), 903–905. doi:10.1002/pd.1523
Borgna-Pignatti, C., Rugolotto, S., De Stefano, P., Zhao, H., Cappellini, M. D., Del Vecchio, G. C., … Cnaan, A. (2004). Survival and complications in patients with thalassemia major treated with transfusion and deferoxamine. Haematologica, 89(10), 1187–1193.
Cao, A., Galanello, R. & Rosatelli, M. C. (1994). Genotype-phenotype correlations in beta-thalassemias. Blood Reviews, 8(1), 1–12. doi:10.1016/0268-960x(94)90002-7
Cappellini, M. D., Cohen, A., Porter, J., Taher, A., & Viprakasit, V. (2014). Guidelines for the management of transfusion dependent thalassaemia (TDT). Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK269382/
Colledge, N. R., Walker, B. R. & Ralston, S. H. (Eds.). (2010). Davidson’s principles and practice of medicine (21st ed.). Churchill Livingstone.
Cunningham, M. J., Macklin, E. A., Neufeld, E. J., Cohen, A. R., & Thalassemia Clinical Research Network. (2004). Complications of beta-thalassemia major in North America. Blood, 104(1), 34–39. doi:10.1182/blood-2003-09-3167
Davis, L. E. & Hohimer, A. R. (1991). Hemodynamics and organ blood flow in fetal sheep subjected to chronic anemia. The American Journal of Physiology, 261(6 Pt 2), R1542-8. doi:10.1152/ajpregu.1991.261.6.R1542
Galanello, R., & Origa, R. (2010). Beta-thalassemia. Orphanet Journal of Rare Diseases, 5(1), 11. doi:10.1186/1750-1172-5-11
Hamed, E. A. & ElMelegy, N. T. (2010). Renal functions in pediatric patients with beta-thalassemia major: relation to chelation therapy: original prospective study. Italian Journal of Pediatrics, 36(1), 39. doi:10.1186/1824-7288-36-39
Hershko, C. (2010). Pathogenesis and management of iron toxicity in thalassemia: Pathogenesis and management of iron toxicity in thalassemia. Annals of the New York Academy of Sciences, 1202(1), 1–9. doi:10.1111/j.1749-6632.2010.05544.x
Kohgo, Y., Ikuta, K., Ohtake, T., Torimoto, Y. & Kato, J. (2008). Body iron metabolism and pathophysiology of iron overload. International Journal of Hematology, 88(1), 7–15. doi:10.1007/s12185-008-0120-5
Kwiatkowski, J. L., Kim, H.-Y., Thompson, A. A., Quinn, C. T., Mueller, B. U., Odame, I., … Thalassemia Clinical Research Network. (2012). Chelation use and iron burden in North American and British thalassemia patients: a report from the Thalassemia Longitudinal Cohort. Blood, 119(12), 2746–2753. doi:10.1182/blood-2011-04-344507
Lafferty, H. M., Anderson, S. & Brenner, B. M. (1991). Anemia: a potent modulator of renal hemodynamics in models of progressive renal disease. American Journal of Kidney Diseases: The Official Journal of the National Kidney Foundation, 17(5 Suppl 1), 2–7.
Makis, A., Hatzimichael, E., Papassotiriou, I., & Voskaridou, E. (2016). 2017 Clinical trials update in new treatments of β-thalassemia: Clinical trials in beta thalassemia. American Journal of Hematology, 91(11), 1135–1145. doi:10.1002/ajh.24530
Malaki, M., Sorkhabi, R. S., Shoaran, M. & Shafighe, B. (2011). Beta thalassemia major: the effect of age on glomerular filtration rate. Saudi Journal of Kidney Diseases and Transplantation: An Official Publication of the Saudi Center for Organ Transplantation, Saudi Arabia, 22(5), 963–968.
Mariani, R., Trombini, P., Pozzi, M. & Piperno, A. (2009). Iron metabolism in thalassemia and sickle cell disease. Mediterranean Journal of Hematology and Infectious Diseases, 1(1), e2009006. doi:10.4084/MJHID.200 9.006
Musallam, K. M. & Taher, A. T. (2012). Mechanisms of renal disease in β-thalassemia. Journal of the American Society of Nephrology: JASN, 23(8), 1299–1302. doi:10.1681/ASN.2011111070
Nangaku, M. (2006). Chronic hypoxia and tubulointerstitial injury: a final common pathway to end-stage renal failure. Journal of the American Society of Nephrology: JASN, 17(1), 17–25. doi:10.1681/ASN.2005070757
Nickavar, A., Qmarsi, A., Ansari, S. & Zarei, E. (2017). Kidney function in patients with different variants of beta-thalassemia. Iranian Journal of Kidney Diseases, 11(2), 132–137.
Ponticelli, C., Musallam, K. M., Cianciulli, P., & Cappellini, M. D. (2010). Renal complications in transfusion-dependent beta thalassaemia. Blood Reviews, 24(6), 239–244. doi:10.1016/j.blre.2010.08.004
Porter, J. B., Evangeli, M., & El-Beshlawy, A. (2011). Challenges of adherence and persistence with iron chelation therapy. International Journal of Hematology, 94(5), 453–460. doi:10.1007/s12185-011-0927-3
Quinn, C. T., Johnson, V. L., Kim, H.-Y., Trachtenberg, F., Vogiatzi, M. G., Kwiatkowski, J. L., … Thalassemia Clinical Research Network. (2011). Renal dysfunction in patients with thalassaemia: Renal Dysfunction in Thalassaemia. British Journal of Haematology, 153(1), 111–117. doi:10.1111/j.1365-2141.2010.08477.x
Sadeghi, M. V., Mirghorbani, M. & Akbari, R. (2021). β-Thalassemia minor & renal tubular dysfunction: is there any association? BMC Nephrology, 22(1), 404. doi:10.1186/s12882-021-02602-9
Samuels, M. L., & Howe, C. D. (1964). Renal abnormalities induced by hydroxyurea (NSC-32065). Cancer Chemotherapy Reports. Part 1, 40, 9–13.
Standards for the clinical care of children and adults with thalassaemia in the UK (3rd ed.). (2016). London, England: UK Thalassaemia Society.
Sumboonnanonda, A., Malasit, P., Tanphaichitr, V. S., Ong-ajyooth, S., Petrarat, S. & Vongjirad, A. (2003). Renal tubular dysfunction in alpha-thalassemia. Pediatric Nephrology (Berlin, Germany), 18(3), 257–260. doi:10.1007/s00467-003-1067-7
Tantawy, A. A. G., El Bablawy, N., Adly, A. A. M. & Ebeid, F. S. E. (2014). Early predictors of renal dysfunction in Egyptian patients with β-thalassemia major and intermedia. Mediterranean Journal of Hematology and Infectious Diseases, 6(1), e2014057. doi:10.4084/MJHID.2014.057
Thein, S. L. (2018). Molecular basis of β thalassemia and potential therapeutic targets. Blood Cells, Molecules & Diseases, 70, 54–65. doi:10.1016/j.bcmd.2017.06.001
Tortora, G. J. & Derrickson, B. H. (2009). Principles of anatomy and physiology (12th ed.). Chichester, England: John Wiley & Sons.
Uzun, E., Balcı, Y. I., Yüksel, S., Aral, Y. Z., Aybek, H. & Akdağ, B. (2015). Glomerular and tubular functions in children with different forms of beta thalassemia. Renal Failure, 37(9), 1414–1418. doi:10.3109/0886022X.2 015.1077314
Weatherall, D. J. (2013). The role of the inherited disorders of hemoglobin, the first “molecular diseases,” in the future of human genetics. Annual Review of Genomics and Human Genetics, 14(1), 1–24. doi:10.1146/annurev-genom-091212-153500
Weatherall, D. J. (2018). The evolving spectrum of the epidemiology of thalassemia. Hematology/Oncology Clinics of North America, 32(2), 165–175. doi:10.1016/j.hoc.2017.11.008
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)