##plugins.themes.bootstrap3.article.main##

Guna M Panneerselvam S Subramanian K. S Harinarayanan M. N

Abstract

Microbes play a vital role in ice nucleation, supporting bio-precipitation, and allowing plants to live in low-water environments. A field experiment was conducted during December 2018 with two phyllosphere microorganisms’ spraying viz., Pseudomonas aeruginosa and pink-pigmented facultative methylotrophs (PPFM) and under three moisture regimes (0.6, 0.8, 1.0 IW/CPE (irrigation water/ cumulative pan evaporation) ratio) on tomato (PKM 1) in Tamil Nadu Agricultural University, Coimbatore (Tamil Nadu). A laboratory experiment was conducted to confirm ice nucleation using two phyllosphere microorganisms’ P. aeruginosa and PPFM. The bioprecipitation impacts on tomatoes were assessed using a set of physiological parameters such as photosynthetic rate, average chlorophyll Index and the ice nucleation activity (INA) assessed using tube nucleation test and scanning electron microscope (SEM). The results showed that the mean photosynthetic rate of PPFM sprayed tomato (Solanum lycopersicum) (PKM 1) plants (40.7 μmol CO2/m2/s) at 10 DAS was significantly higher than P. aeruginosa sprayed plant (38.7 μmol CO2/m2/s) under different irrigation regimes. The average chlorophyll Index value of the P. aeruginosa sprayed tomato plants (58.1) was higher than PPFM sprayed plants (56.4). The tube nucleation tests were proved that ice crystallization induced by P. aeruginosa in super-cooled buffer at - 2 to -10°C while PPFM not catalyze the buffer even after 3hours. The scanning electron microscope (SEM) indicated the P. aeruginosa growth at the upper surface of the leaf and PPFM growth more at the lower surface of the leaf compared to without inoculation of microbes on leaves. Overall, the result revealed that P. aeruginosa may assist in ice nucleation activity that will help to make artificial rain in the near future.

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Ice nucleation activity, Pseudomonas aeruginosa, Pink-pigmented facultative methylotrophs, Scanning electron microscope, Tube nucleation test

References
CASWMT (1983). CASWMT Tamil Nadu Govt carried out cloud seeding. accessed Nov,23.
DeMott, P.J., Cziczo, D.J., Prenni, A., Murphy, D.M., Kreidenweis, S., Thomson, D.S., & Borys, R. (2003). Compositions and concentrations of atmospheric ice nuclei. Proc. Natl. Acad. Sci. USA 100,14,655-614,660.
Gaignard, J.L. & Luisetti, J. (1993). Pseudomonas syringae, bactérie épiphyte, glaçogène et pathogène. Agronomie 13 (5), 333-370.
Harding, T., Jungblut, A. D., Lovejoy, C. & Vincent, W. F. (2011). Microbes in high arctic snow and implications for the cold biosphere. Applied and Environmental Microbiology, 77(10), 3234-3243. https://doi.org/10.1128/AEM.0 2611-10
Harrison, A. D. (2019). Ice nucleation by mineral dust (Doctoral dissertation, University of Leeds).
Hirano, Susan S, L Stuart Baker & Christen D Upper. (1985). Ice nucleation temperature of individual leaves in relation to population sizes of ice nucleation active bacteria and frost injury. Plant Physiology 77 (2),259-265.
Jiang, Y. P., Cheng, F., Zhou, Y. H., Xia, X. J., Shi, K. & Yu, J. Q. (2012). Interactive effects of CO2 enrichment and brassinosteroid on CO2 assimilation and photosynthetic electron transport in Cucumis sativus. Environmental and Experimental Botany, 75, 98-106. https://doi.org/10.1016/j.envexpbot.2011.09.002Get
Kakarla, Satya Ganesh, Rajasekhar Mopuri, Srinivasa Rao Mutheneni, Kantha Rao Bhimala, Sriram Kumaraswamy, Madhusudhan Rao Kadiri, Krushna Chandra Gouda, & Suryanaryana Murty Upadhyayula. (2019). Temperature dependent transmission potential model for chikungunya in India. Science of the Total Environment 647, 66-74. https://doi.org/10.1016/j.scitotenv.2018.07.46 1Get
Kim, K. Y., Madhaiyan, M., Yim, W., Chauhan, P. S. & Sa, T. (2010). A novel pink-pigmented facultative Methylobacterium phyllosphaerae sp. nov. from phyllosphere of rice. In 19th World Congress of Soil Science, Soil Solutions for a Changing World. Brisbane, Australia (pp. 5-8).
Kliewer, Christine E. (2009). Electron Microscopy and Imaging. In Zeolite Characterization and Catalysis, 169-196. Springer. DOI: 10.1007/978-1-4020-9678-5_4
Maki, Leroy R, Elizabeth L Galyan, Mei-Mon Chang-Chien & Daniel R Caldwell. (1974). Ice nucleation induced by Pseudomonas syringae. Appl. Environ. Microbiol., 28 (3), 456-459.
Matsumoto, Masakazu, Shinji Saito & Iwao Ohmine (2002). Molecular dynamics simulation of the ice nucleation and growth process leading to water freezing. Nature 416 (6879), 409. https://doi.org/10.1038/416409a
Misratia, Khadija M., Mohd Razi Ismail, Md Abdul Hakim, Mohamed Hanafi Musa, & Adam Puteh. (2013). Effect of salinity and alleviating role of gibberellic acid (GA3) for improving the morphological, physiological and yield traits of rice varieties. Australian Journal of Crop Science, 7 (11),1682.
Morris, CE, DC Sands, C Glaux, J Samsatly, S Asaad, AR Moukahel, Fabio Luiz Teixeira Gonçalves & EK Bigg. (2013). Urediospores of rust fungi are ice nucleation active at>− 10° C and harbor ice nucleation active bacteria. Atmospheric Chemistry and Physics 13 (8), 4223-4233. https://doi.org/10.5194/acp-13-4223-201
Naik, K., Mishra, S., Srichandan, H., Singh, P. K. & Choudhary, A. (2020). Microbial formulation and growth of cereals, pulses, oilseeds & vegetable crops. Sustainable Environment Research, 30(1), 1-18. https://doi.org/10.11 86/s42834-020-00051-x
Pandey, Ravindra, Kota Usui, Ruth A Livingstone, Sean A Fischer, Jim Pfaendtner, Ellen H.G. Backus, Yuki Nagata, Janine Fröhlich-Nowoisky, Lars Schmüser, & Sergio Mauri. (2016). Ice-nucleating bacteria control the order and dynamics of interfacial water. Science advances 2 (4),e1501630. DOI: 10.1126/sciadv.1501630
Perrino, C. & Marcovecchio, F. (2016). A new method for assessing the contribution of primary biological atmospheric particles to the mass concentration of the atmospheric aerosol. Environment International, 87, 108-115. https://doi.org/10.1016/j.envint.2015.11.015
Prasada, Rao, GSLHV. (2015). Agricultural Meteorology: PHI Learning Pvt. Ltd.
Rodrigues, V. A., Crusciol, C. A. C., Bossolani, J. W., Moretti, L. G., Portugal, J. R., Mundt, T. T. & Lollato, R. P. (2021). Magnesium foliar supplementation increases grain yield of soybean and maize by improving photosynthetic carbon metabolism and antioxidant metabolism. Plants, 10(4), 797.
Sarron, E., Cochet, N. & Gadonna-Widehem, P. (2013). Effects of aqueous ozone on Pseudomonas syringae viability and ice nucleating activity. Process Biochemistry, 48(7), 1004-1009. https://doi.org/10.1016/j.procbio.20 13.05.018
Schaefer, Vincent J. (1946). The production of ice crystals in a cloud of supercooled water droplets. Science, 104 (2707),457-459.
Vanderveer, T. L., Choi, J., Miao, D. & Walker, V. K. (2014). Expression and localization of an ice nucleating protein from a soil bacterium, Pseudomonas borealis. Cryobiology, 69(1), 110-118. https://doi.org/10.1016/j.cryobiol.2014.06.001
Vasebi, Yalda, Marco E Mechan Llontop, Regina Hanlon, David G Schmale III, Russell Schnell, & Boris A Vinatzer. (2019). Comprehensive characterization of an aspen (Populus tremuloides) leaf litter sample that maintained ice nucleation activity for 48 years. Biogeosciences, 16 (8),1675-1683. https://doi.org/10.5194/bg-16-1675-2019
Wilson, Peter, & H. Ramlov (1995). Hemolymph ice nucleating proteins from the New Zealand alpine weta Hemideina maori (Orthoptera: Stenopelmatidae). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 112 (3), 535-542.
Wolber & Paul K. (1993). Bacterial ice nucleation. In Advances in Microbial Physiology, 203-237. https://doi.org/10.1016/S0065-2911(08)60030-2
Section
Research Articles

How to Cite

Ice nucleation active bacteria and its mitigation on tomato (Solanum lycopersicum). (2022). Journal of Applied and Natural Science, 14(SI), 238-243. https://doi.org/10.31018/jans.v14iSI.3708