Poovarasan T Jerlin R Kennedy J S Senthil N Sasthri G Anand T


Endophytes are important microorganisms that enhance the plant's stability through a symbiotic relationship, without any
harmful effects and symptoms in the host plant. To study the effect of endophytes on overall performance of COH(M)8 hybrid maize seeds, the present study was conducted with different endophytic seed priming for  12 hrs duration with Beauveria
bassiana @
5% (T2), Metarhizium anisopliae @ 5% (T3) and Bacillus subtilis @ 8% (T4) along with hydro priming (T1) and
untreated control (T0).  The seed priming treatments with all the above three endophytes enhanced the seed quality parameters, among which M. anisopliae @ 5% (T3) registered maximum increase of germination (4.34%), shoot length (20.73%), root length (15.04%), dry matter production (15.22%) and vigour index (22.68%) over control. Similarly, the seeds primed with M.
anisopliae @
5% (T3) recorded the highest value of dehydrogenase activity (0.441 OD value), α- amylase activity (2.06 mg
maltose min-1) and antioxidant activity viz., catalase (1.55 μmol H2O2 min-1 g-1 protein) and peroxidase  (0.87 U mg-1protein
min-1). Results of this study revealed that the endophytes can enhance overall the seed quality in maize.




Endophytes, Maize, Seed priming, Seed germination

Abdul-Baki, A. A. & Anderson, J. D. (1973). Vigor determination in soybean seed by multiple criteria 1. Crop science, 13(6), 630-633. https://doi.org/10.2135/cropsci1 973.0011183X001300060013x
Aebi, H. (1984). Catalase in vitro. In Methods in enzymology. Elsevier, 121-126.
Afzal, I., Basra, S. M. A., Shahid, M., Farooq, M. & Saleem, M. (2008). Priming enhances germination of spring maize (Zea mays L.) under cool conditions. Seed Science and Technology, 36(2), 497-503. https://doi.org/10.15258/sst.2008.36.2.26
Amutha, M. (2021). In planta colonisation of Beauveria bassiana in cotton plant and its effect against insect pests. Journal of Biological Control, 35(3), 137-145. https://doi.org/10.18311/jbc/2021/28489.
Arkhipova, T. N., Veselov, S. U., Melentiev, A. I., Martynenko, E. V. & Kudoyarova, G. R. (2005). Ability of bacterium Bacillus subtilis to produce cytokinins and to influence the growth and endogenous hormone content of lettuce plants. Plant and Soil, 272(1), 201-209. https://doi.org/10.1007/s11104-004-5047-x
Beauchamp, C. & Fridovich, I. (1971). Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical biochemistry, 44(1), 276-287. https://doi.org/10.1016/0003-2697(71)90370-8.
Chakraborty, U., Roy, S., Chakraborty, A. P., Dey, P. & Chakraborty, B. (2011). Plant growth promotion and amelioration of salinity stress in crop plants by a salt-tolerant bacterium. Recent Research in Science and Technology, 3(11), 13-21.
Deb, L. & Dutta, P. (2021). Antagonistic potential of Beauveria bassiana (Balsamo) Vuillemin against Pythium myriotylum causing damping off of tomato. Indian Phytopathology, 74(3), 715-728. https://doi.org/10.1007/s42360-021-00372-w
Ellis, R. H. & Roberts, E. H. (1980). Improved equations for the prediction of seed longevity.  Annals of Botany, 45(1), 13-30. https://doi.org/10.1093 oxfordjournals.aob.a08 5797
Gayathri, M., Jerlin, R., Kennedy, J. S. & Sasthri, G. (2020). Seed endophytic treatment for enhancing seed quality in maize (Zea mays L.). Multilogical in Science, 10(12), 1108-1112.
Gond, S. K., Bergen, M. S., Torres, M. S. & White Jr, J. F. (2015). Endophytic Bacillus spp. produce antifungal lipopeptides and induce host defence gene expression in maize.  Microbiological Research, 172, 79-87. https://doi.org/10.1016/j.micres.2014.11.004
Grabe, D. F. (1966). Significance of seedling vigor in corn. In Proc. 21st Hybrid Corn Industry Res. Conf. Am. Seed Trade Association, 21, 39-44.
Greenfield, M., Gomez-Jimenez, M. I., Ortiz, V., Vega, F. E., Kramer, M. & Parsa, S. (2016). Beauveria bassiana and Metarhizium anisopliae endophytically colonize
cassava roots following soil drench inoculation. Biological Control, 95, 40-48. https://doi.org/10.1016 j.biocontrol.201 6.01.002
Gurulingappa, P., Sword, G. A., Murdoch, G. & McGee, P. A. (2010). Colonization of crop plants by fungal entomopathogens and their effects on two insect pests when in planta. Biological control, 55(1), 34-41. https://doi.org/10.1016/j.biocontrol.2010.06.011
Heydecker, W. (1973). Germination of an idea: the priming of seeds. Rep. Sch. Agric. Univ. Nott, 1973, 50-67.
Hodge, J. E. & Hofreiter, B. T. (1962). Phenol-sulfuric acid colorimetric method. Methods in carbohydrate chemistry, 1, 388-389.
International Seed Testing Association (2012). International rules for seed testing. International Seed Testing Association. Bassersdorf (Switzerland).
Junges, E., Muniz, M. F. B., Bastos, B. O. & Oruoski, P. (2016). Biopriming in bean seeds. Acta agriculturæ Scandinavica. 3, 207-214. https://doi.org/10.1080/09064710.2 015.1087585
Kavitha, S., Bhaskaran, M. & Vanangamudi, K. (2013). Effect of seed hardening and film Coating on crop growth and yield of sorghum cv. CO (S) 28 under neyveli lignite mine spoil condition. Journal of Academia and Industrial Research, 2(7), 417.
Khalil, A. M. A., Hassan, S. E. D., Alsharif, S. M., Eid, A. M., Ewais, E. E. D., Azab, E., Gobouri, A.A., Elkelish, A & Fouda, A. (2021). Isolation and characterization
of fungal endophytes isolated from medicinal plant Ephedra pachyclada as plant growth promoting. Biom olecules, 11(2), 140. https://doi.org/10.3390/biom11020140
Khan, N., Martinez-Hidalgo, P., Ice, T. A., Maymon, M., Humm, E. A., Nejat, N., Sanders, E.R., Kaplan, D & Hirsch, A. M. (2018). Antifungal activity of
Bacillus species against Fusarium and analysis of the potential
mechanisms used in biocontrol. Frontiers in microbiology, 9, 1-12. https://doi.org/10.3389/fmicb.2018.02363
Kittock, D. L. & Law, A. G. (1968). Relationship of seedling vigor to respiration and tetrazolium chloride reduction by germinating wheat seeds. Agronomy Journal, 60(3), 286-288. https://doi.org/10.2134/agronj1968.0002196200 6000030012x.
Lechowska, K., Kubala, S., Wojtyla, Ł., Nowaczyk, G., Quinet, M., Lutts, S. & Garnczarska, M. (2019). New insight on water status in germinating Brassica napus seeds in relation to priming-improved germination. International Journal of Molecular Sciences, 20(3), 540. https://doi.org/10.3390/ijms20030540
Lee, S. S. & Kim, J. H. (2000). Total sugars, α-amylase activity, and germination after priming of normal and aged rice seeds. Korean Journal of Crop Science, 45(2), 108-111.
Li, H., Zhao, Y., & Jiang, X. (2019). Seed soaking with Bacillus sp. strain HX-2 alleviates negative effects of drought stress on maize seedlings. Chilean journal of agricultural research, 79(3), 396-404. http://dx.doi.org/10.4067/S0718-58392019000300396
Liao, X., Lovett, B., Fang, W. & St Leger, R. J. (2017). Metarhizium robertsii produces indole-3-acetic acid, which promotes root growth in Arabidopsis and enhances virulence to insects. Microbiology, 163(7), 980-991. https://doi.org/10.1099/mic.0.000494.
Macuphe, N., Oguntibeju, O. O. & Nchu, F. (2021). Evaluating the endophytic activities of Beauveria bassiana on the physiology, growth, and antioxidant activities of extracts of lettuce (Lactuca sativa L.). Plants, 10(6), 1178. https://doi.org/10.3390/plants10061178
Maguire, J. D. (1962). Speed of germination-aid in selection and evaluation for seedling emergence and vigor. Crop Science, 2, 176-177.
Malik, C. P. & Singh, M. P. (1980). Assay of peroxidase, Plant Enzymology and Histoenzymology. Kalyani Publishers. New Delhi.
Matthews, S. & Bradnock, W. T. (1968). Relationship between seed exudation and field emergence in peas and French beans. Horticulture Research, 8, 89-93.
Nath, S. (1991). Changes in germination performance and hydrolytic enzyme activity in wheat seeds (Triticum aestivum L.) caused by ageing and pre-sowing treatments: a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Seed Technology at Massey University, Palmerston North, New Zealand.
Paparella, S., Araujo, S. S., Rossi, G., Wijayasinghe, M., Carbonera, D. & Balestrazzi, A. (2015). Seed priming: state of the art and new perspectives. Plant cell reports, 34(8), 1281-1293. https://doi.org/10.1007/s00299-015-1784-y
Paul, A. K., Mukherji, S. & Sircar, S. M. (1970). Metabolic changes in rice seeds during storage. Indian Journal of Agricultural Science, 40(12), 1031-1036.
Presley, J. T. (1958). Relation of protoplast permeability to cotton seed viability and predisposition to seedling disease. Plant Disease Reporter, 42(7), 852.
Radhakrishnan, R., Khan, A. L. & Lee, I. J. (2013). Endophytic fungal pre-treatments of seeds alleviates salinity stress effects in soybean plants. Journal of Microbiology, 51(6), 850-857. https://doi.org/10.1007/s12275-013-3168-8
Reinhold-Hurek, B. & Hurek, T. (1998). Life in grasses:
diazotrophic endophytes. Trends in microbiology, 6(4), 139-144. https://doi.org/10.1016/S0966-842X(98)01229-3
Rodriguez, R. J., White J, J. F., Arnold, A. E. & Redman, A. R. A. (2009). Fungal endophytes: diversity and functional roles. New phytologist, 182(2), 314-330. https://doi.org/10.1111/j.1469-8137.2009.02773.x
Russo, M. L., Scorsetti, A. C., Vianna, M. F., Cabello, M., Ferreri, N. & Pelizza, S. (2019). Endophytic effects of Beauveria bassiana on corn (Zea mays) and
its herbivore, Rachiplusia nu (lepidoptera: Noctuidae). Insects, 10(4), 110. https://doi.org/10.3390/insects10040110
Saxena, O. P., Singh, G., Pakeeraiah, T. & Pandey, N. (1985). Seed deterioration studies in some vegetable seeds. Seed Research in Horticulture, 215, 39-44. https://doi.org/10.17660/ActaHortic.1987.215.5
Schulz, B. & Boyle, C. (2005). The endophytic continuum. Mycological research, 109(6), 661-686. https://doi.org/10.1017/S095375620500273X
Song, G. C., Choi, H. K., Kim, Y. S., Choi, J. S. & Ryu, C. M. (2017). Seed defense biopriming with bacterial cyclodipeptides triggers immunity in cucumber and pepper. Scientific Reports, 7(1), 1-15. https://doi.org/10.1038/s41598-017-14155-9
Strobel, G. (2018). The emergence of endophytic microbes and their biological promise. Journal of Fungi, 4(2), 57. https://doi.org/10.3390/jof4020057
Swain, H., Adak, T., Mukherjee, A. K., Sarangi, S., Samal, P., Khandual, A., Jena, R., Bhattacharyya, P., Naik, S. K., Mehetre, S. T., Baite, M. S., Kumar, M. S & Zaidi, N. W. (2021). Seed Biopriming With Trichoderma Strains Isolated From Tree Bark Improves Plant Growth, Antioxidative Defense System in Rice and Enhance Straw Degradation Capacity. Frontiers in Microbiology, 12, 240. https://doi.org/10.3389/fmicb.2021.633881
Tidke, S.A., Kiran, S., Giridhar, P & Gokare, R.A. (2018). Current Understanding and Future Perspectives of Endophytic Microbes vis-a-vis Production of Secondary Metabolites. In Endophytes and Secondary Metabolites. Springer International Publishing: Cham, Switzerland.
White, J. F., Chen, Q., Torres, M. S., Mattera, R., Irizarry, I., Tadych, M. & Bergen, M. (2015). Collaboration between grass seedlings and rhizobacteria to scavenge organic nitrogen in soils. AoB plants, 7. https://doi.org/10.1093/aobpla/plu093
Wilson, D. (1995). Endophyte: the evolution of a term, and clarification of its use and definition. Oikos, 73,274-276.
Xu, M., Sheng, J., Chen, L., Men, Y., Gan, L., Guo, S. & Shen, L. (2014). Bacterial community compositions of tomato (Lycopersicum esculentum Mill.) seeds and plant growth promoting activity of ACC deaminase producing Bacillus subtilis (HYT-12-1) on tomato seedlings. World Journal of Microbiology and Biotechnology, 30(3), 835-845. https://doi.org/10.1007/s11274-013-1486-y
Yan, J. F., Broughton, S. J., Yang, S. L. & Gange, A. C. (2015). Do endophytic fungi grow through their hosts systemically?. Fungal ecology, 13, 53-59. https://doi.org/1 0.1016 j.funeco.2014.07.005
Citation Format
How to Cite
Seed priming with endophytes on physiological, biochemical and antioxidant activity of hybrid maize (Zea mays l.) COH (M) 8 seeds . (2022). Journal of Applied and Natural Science, 14(3), 821-828. https://doi.org/10.31018/jans.v14i3.3673
More Citation Formats:
Research Articles

How to Cite

Seed priming with endophytes on physiological, biochemical and antioxidant activity of hybrid maize (Zea mays l.) COH (M) 8 seeds . (2022). Journal of Applied and Natural Science, 14(3), 821-828. https://doi.org/10.31018/jans.v14i3.3673