##plugins.themes.bootstrap3.article.main##

Manoj Kumar Monika Bhardwaj Poonam Yadav Divya Vashishth Sulekha Chahal Sunita Dalal Sudhir Kumar Kataria

Abstract

Urease, a nickel-containing metalloenzyme is getting remarkable attention due to a diverse range of applications for mankind. Urease plays a magnificent role in various field like agriculture, analytical, geological phenomena, beverage industry and is an important diagnostic tool. Urease is mainly present in bacteria, fungi, plants and invertebrates and its manifestation in specific genera may open new vistas for its taxonomic position. Various qualitative and quantitative assays are also reported for the estimation of urease enzyme. Urease based biosensors utilizing green synthesis on nanoparticles are also trending. Recently developed inhibitors against urease were discussed in the review. Inhibitory mechanisms involving the structural similarity of the substrate through modification or derivatization can also help in rational drug design by two possible competitive ways either by mimicking monodentate urea binding or binding as a tetrahedral intermediate. Immobilisation of urease through gel entrapment, using non-covalent and covalent protein tags, cross linkage, covalent bonding, using composite films, Teflon, co-precipitation and coating on nanoparticles is also reported. This review also comprised of various application of urease including enhancement of fertility in the soil, cell to cell organization, protection to predators, treatment of various bladder related diseases and infections, analysis of urea and heavy metal ions, biocementation, pollution control by bioleaching of heavy metals and making beverages urea and ethyl carbamate free. As researchers have a keen interest in urease enzyme at present, most of its aspects were incorporated in the article to make it helpful to the scientific community for further research related to the development of new inhibitors and add on applications of urease for the upliftment of the human as well as environment.


 

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Applications, Enzyme Inhibitors, Genetic Organization, Immobilization, Urease

References
Abbas, A., Ali, B., Khan, K. M., Iqbal, J., ur Rahman, S., Zaib, S. & Perveen, S. (2019). Synthesis and in vitro urease inhibitory activity of benzohydrazide derivatives, in silico and kinetic studies. Bioorganic Chemistry, 82, 163-177. https://doi.org/10.1016/j.bioorg.2018.09.036
Ahmed, M., Imran, M., Muddassar, M., Hussain, R., Khan, M. U., Ahmad, S. & Ashfaq, S. (2020). Benzenesulfonohydrazides inhibiting urease: Design, synthesis, their in vitro and in silico studies. Journal of Molecular Structure, 1220, 128740. https://doi.org/10.1016/j.molstruc.2020.128740
Akkas, T., Zakharyuta, A., Taralp, A. & Ow-Yang, C. W. (2020). Cross-linked enzyme lyophilisates (CLELs) of urease: A new method to immobilize ureases. Enzyme and Microbial Technology, 132, 109390. https://doi.org/10.1016/j.enzmictec.2019.109390
Al-Ansari, A. S., Abdulkareem, M. A. & Kadhum, S. J. (2019). Activity and Thermodynamic parameters of urease in soils amended with organic residues. Iraqi J. Agric. Sci, 50(3). https://doi.org/10.36103/ijas.v50i3.695
Alev, B., Tunali, S., Yanardag, R. & Yarat, A. (2019). Influence of storage time and temperature on the activity of urease. Bulgarian Chemical Communications, 51(2), 159 – 163. DOI: 10.34049/bcc.51.2.4536
Al-Shams, J. K. J., Hussein, M. A. & Al-Hakeim, H. (2019). Activity and stability of urease enzyme immobilized on Amberlite resin. Ovidius University Annals of Chemistry, 31(1), 1-4. doi: 10.20944/preprints201910.0348.v1
Anbu, P., Kang, C. H., Shin, Y. J. & So, J. S. (2016). Formations of calcium carbonate minerals by bacteria and its multiple applications. Springerplus, 5(1), 1-26. DOI 10.1186/s40064-016-1869-2
Ansari, S. & Yamaoka, Y. (2017). Survival of Helicobacter pylori in gastric acidic territory. Helicobacter, 22(4), e12386. https://doi.org/10.1111/hel.12386
Arias, D., Cisternas, L. A. & Rivas, M. (2017). Biomineralization of calcium and magnesium crystals from seawater by halotolerant bacteria isolated from Atacama Salar (Chile). Desalination, 405, 1-9. https://doi.org/10.1016/j.desal.2016.11.027
Armbruster, C. E., Mobley, H. L. & Pearson, M. M. (2018). Pathogenesis of Proteus mirabilis infection. EcoSal Plus, 8(1). DOI: https://doi.org/10.1128/ecosalplus.ESP-0009-2017
Baltas, N. (2017). Investigation of a wild pear species (Pyrus elaeagnifolia subsp. Elaeagnifolia Pallas) from Antalya, Turkey: polyphenol oxidase properties and anti-xanthine oxidase, anti-urease, and antioxidant activity. International Journal of Food Properties, 20(3), 585-595. https://doi.org/10.1080/10942912.2016.1171777
Barazorda-Ccahuana, H. L., Gomez, B., Mas, F. & Madurga, S. (2020). Effect of pH on the Supramolecular Structure of Helicobacter pylori Urease by Molecular Dynamics Simulations. Polymers, 12(11), 2713. https://doi.org/10.3390/polym12112713
Bedan, D. S. (2020). Extraction, precipitation and characterization of urease from Vicia faba L. Al-Mustansiriyah Journal of Science, 31(1), 9. http://doi.org/10.23851/mjs.v31i1.555
Behzadi, P., Urbán, E., Matuz, M., Benko, R. & Gajdacs, M. (2020). The role of gram-negative bacteria in urinary tract infections: current concepts and therapeutic options. Advances in Microbiology, Infectious Diseases and Public Health, 1323, 35-69. DOI: 10.1007/5584_2020_566
Benini, S., Rypniewski, W. R., Wilson, K. S., Miletti, S., Ciurli, S. & Mangani, S. (1999). A new proposal for urease mechanism based on the crystal structures of the native and inhibited enzyme from Bacillus pasteurii: why urea hydrolysis costs two nickels. Structure, 7(2), 205-216. https://doi.org/10.1016/S0969-2126(99)80026-4
Bishai, W. R. & Timmins, G. S. (2019). Potential for breath test diagnosis of urease positive pathogens in lung infections. Journal of breath research, 13(3), 032002. https://doi.org/10.1088/1752-7163/ab2225
Braissant, O., Astasov-Frauenhoffer, M., Waltimo, T., & Bonkat, G. (2020). A review of methods to determine viability, vitality, and metabolic rates in microbiology. Frontiers in Microbiology, 11, 547458. https://doi.org/10.3389/fmicb.2020.547458
Broll, V., Perin, A. P. A., Lopes, F. C., Martinelli, A. H. S., Moyetta, N. R., Fruttero, L. L., ... & Carlini, C. R. (2021). Non-enzymatic properties of Proteus mirabilis urease subunits. Process Biochemistry, 110, 263-274. https://doi.org/10.1016/j.procbio.2021.08.023
Byrne, M. P., Tobin, J. T., Forrestal, P. J., Danaher, M., Nkwonta, C. G., Richards, K., ... & O’Callaghan, T. F. (2020). Urease and nitrification inhibitors—As mitigation tools for greenhouse gas emissions in sustainable dairy systems: a review. Sustainability, 12(15), 6018. https://doi.org/10.3390/su12156018
Carey, N., Dupont, S. & Sigwart, J. D. (2016). Sea hare Aplysia punctata (Mollusca: Gastropoda) can maintain shell calcification under extreme ocean acidification. The Biological Bulletin, 231(2), 142-151.
Carlini, C. R. & Ligabue-Braun, R. (2016). Ureases as multifunctional toxic proteins: A review. Toxicon, 110, 90-109. https://doi.org/10.1016/j.toxicon.2015.11.020
Cassimjee, K. E., Kadow, M., Wikmark, Y., Humble, M. S., Rothstein, M. L., Rothstein, D. M. & Bäckvall, J. E. (2014). A general protein purification and immobilization method on controlled porosity glass: Biocatalytic applications. Chemical Communications, 50(65), 9134-9137. https://doi.org/10.1039/C4CC02605E
Chang, D., Tram, K., Li, B., Feng, Q., Shen, Z., Lee, C. H., ... & Li, Y. (2017). Detection of DNA amplicons of polymerase chain reaction using litmus test. Scientific Reports, 7(1), 1-8. DOI:10.1038/s41598-017-03009-z
Chen, Y., Gao, Y., Ng, C. W. & Guo, H. (2021). Bio-improved hydraulic properties of sand treated by soybean urease induced carbonate precipitation and its application Part 1: Water retention ability. Transportation Geotechnics, 27, 100489. https://doi.org/10.1016/j.trgeo.2020.10 0489
Cheng, L., Shahin, M. A. & Cord-Ruwisch, R. (2017). Surface percolation for soil improvement by biocementation utilizing in situ enriched indigenous aerobic and anaerobic ureolytic soil microorganisms. Geomicrobiology journal, 34(6), 546-556. https://doi.org/10.1080/01490451.2 016.1232766
Choi, H., Cho, S. H. & Hahn, S. K. (2020). Urease-powered polydopamine nanomotors for intravesical therapy of bladder diseases. ACS nano, 14(6), 6683-6692. https://doi.org/10.1021/acsnano.9b09726
Christensen, W. B. (1946). Urea decomposition as a means of differentiating Proteus and paracolon cultures from each other and from Salmonella and Shigella types. Journal of bacteriology, 52(4), 461-466.
Dakal, T. C. (2021). Antigenic sites in SARS-CoV-2 spike RBD show molecular similarity with pathogenic antigenic determinants and harbors peptides for vaccine development. Immunobiology, 226(5),152091. https://doi.org/10.1016/j.imbio.2021.152091
Dalton, D. A. (2018). Essentiality of Nickel for Plants. Nickel in Soils and Plants, 1-20. CRC press.
Defferrari, M. S., Da Silva, R., Orchard, I. & Carlini, C. R. (2014a). Jack bean (Canavalia ensiformis) urease induces eicosanoid-modulated hemocyte aggregation in the Chagas' disease vector Rhodnius prolixus. Toxicon, 82, 18-25. https://doi.org/10.1016/j.toxicon.2014.02.006
Defferrari, M. S., Lee, D. H., Fernandes, C. L., Orchard, I. & Carlini, C. R. (2014). A phospholipase A2 gene is linked to Jack bean urease toxicity in the Chagas' disease vector Rhodnius prolixus. Biochimica et Biophysica Acta (BBA)-General Subjects, 1840(1), 396-405. https://doi.org/10.1016/j.bbagen.2013.09.016
Dilrukshi, R. A. N. & Kawasaki, S. (2016). Effective use of plant-derived urease in the field of geoenvironmental. Geotechnical Engineering. J Civil Environ Eng, 6(207), 2. http://dx.doi.org/10.4172/2165-784X.1000207
Dong, J. X., Gao, Z. F., Zhang, Y., Li, B. L., Li, N. B. & Luo, H. Q. (2017). A selective and sensitive optical sensor for dissolved ammonia detection via agglomeration of fluorescent Ag nanoclusters and temperature gradient headspace single drop microextraction. Biosensors and Bioelectronics, 91, 155-161. https://doi.org/10.1016/j.bios.2016.11.062
Douglas, T. E., Łapa, A., Samal, S. K., Declercq, H. A., Schaubroeck, D., Mendes, A. C. & Skirtach, A. G. (2017). Enzymatic, urease‐mediated mineralization of gellan gum hydrogel with calcium carbonate, magnesium‐enriched calcium carbonate and magnesium carbonate for bone regeneration applications. Journal of tissue engineering and regenerative medicine, 11(12), 3556-3566. https://doi.org/10.1002/term.2273
Duran Ramirez, J. M., Gomez, J., Obernuefemann, C. L., Gualberto, N. C. & Walker, J. N. (2022). Semi-Quantitative Assay to Measure Urease Activity by Urinary Catheter-Associated Uropathogens. Frontiers in cellular and infection microbiology, 12, 859093. https://doi.org/10.3389/fcimb.2022.859093
Estiu, G. & Merz, K. M. (2007). Competitive hydrolytic and elimination mechanisms in the urease catalyzed decomposition of urea. The Journal of Physical Chemistry B, 111(34), 10263-10274. https://doi.org/10.1021/jp072323o
Fatoni, A., Anggraeni, M. D. & Zulhidayah, L. Z. (2019). Natural reagent from Secang (Caesalpinia sappan L.) heartwood for urea biosensor. In IOP Conference Series: Materials Science and Engineering, 509(1), 012010). IOP Publishing. doi:10.1088/1757-899X/509/1/012010
Fopase, R., Nayak, S., Mohanta, M., Kale, P. & Paramasivan, B. (2019). Inhibition assays of free and immobilized urease for detecting hexavalent chromium in water samples. 3 Biotech, 9(4), 1-12.
Garcia Gonzalez, J. & Hernandez, F. J. (2022). Nuclease activity: an exploitable biomarker in bacterial infections. Expert Review of Molecular Diagnostics, 22(3), 265-294. https://doi.org/10.1080/14737159.2022.2049249
Ghobadi, E., Ghanbarimasir, Z. & Emami, S. (2021). A review on the structures and biological activities of anti-Helicobacter pylori agents. European Journal of Medicinal Chemistry, 223, 113669. https://doi.org/10.1016/j.ejmech.2021.113669
Gwenzi, W. (2019). Carbon Sequestration via Biomineralization: Processes, Applications and Future Directions. In Sustainable Agriculture Reviews, 37, 93-106. Springer, Cham. DOI: 10.1007/978-3-030-29298-0_5
Habala, L., Devínsky, F. & Egger, A. E. (2018). Metal complexes as urease inhibitors. Journal of Coordination Chemistry, 71(7), 907-940. https://doi.org/10.1080/009589 72.2018.1458228
Hamad, A. (2018). Synthesis, Characterization and Bioassay of Schiff’s Bases Derived from Antimicrobial Drugs (Doctoral dissertation).
Hamad, A., Khan, M. A., Ahmad, I., Imran, A., Khalil, R., Al-Adhami, T., Rahman, K. M., Quratulain, Zahra, N. & Shafiq, Z. (2020). Probing sulphamethazine and sulphamethoxazole based Schiff bases as urease inhibitors; synthesis, characterization, molecular docking and ADME evaluation. Bioorganic Chemistry, 105, 104336. https://doi.org/10.1016/j.bioorg.2020.104336
Hameed, A., Al-Rashida, M., Uroos, M., Qazi, S. U., Naz, S., Ishtiaq, M. & Khan, K. M. (2019). A patent update on therapeutic applications of urease inhibitors (2012–2018). Expert Opinion on Therapeutic Patents, 29(3), 181-189. https://doi.org/10.1080/13543776.2019.1584612
Hashihama, F., Kanda, J., Tauchi, A., Kodama, T., Saito, H. & Furuya, K. (2015). Liquid waveguide spectrophotometric measurement of nanomolar ammonium in seawater based on the indophenol reaction with o-phenylphenol (OPP). Talanta, 143, 374-380. https://doi.org/10.1016/j.talanta.2015.05.007
Huey, C. E., Yahya, W. Z. N. & Mansor, N. (2019). Allicin incorporation as urease inhibitor in a chitosan/starch based biopolymer for fertilizer application. Materials Today: Proceedings, 16, 2187-2196. https://doi.org/10.1016/j.matpr.2019.06.109
Hussain, A., Rafeeq, H., Afsheen, N., Jabeen, Z., Bilal, M. & Iqbal, H. (2021). Urease-Based Biocatalytic Platforms―A Modern View of a Classic Enzyme with Applied Perspectives. Catalysis Letters, 1-24.
Hussaini, A. (2021). Characterization Of Urease Of Bacterial Isolates From Cement For Concrete Enhancement (Doctoral dissertation).
Jabri, E. Carr, M. B., Hausinger, R. P. & Karplus, P. A. (1995). The crystal structure of urease from Klebsiella aerogenes. Science, 268(5213), 998-1004.
Jangi, S. R. H., Akhond, M. & Dehghani, Z. (2020). High throughput covalent immobilization process for improvement of shelf-life, operational cycles, relative activity in organic media and enzymatic kinetics of urease and its application for urea removal from water samples. Process Biochemistry, 90, 102-112. https://doi.org/10.1016/j.procbio.2019.11.001
Jannah, F. & Kim, J. M. (2019). pH-sensitive colorimetric polydiacetylene vesicles for urease sensing. Dyes and Pigments, 169, 15-21. https://doi.org/10.1016/j.dyepig.201 9.04.072
Javadi, N., Khodadadi, H., Hamdan, N. & Kavazanjian Jr, E. (2018). EICP treatment of soil by using urease enzyme extracted from watermelon seeds. In IFCEE 2018 (pp. 115-124).
Jia, Y. & Fang, F. (2020). Improving applicability of urease from Bacillus amyloliquefaciens JP-21 by site-directed mutagenesis. Sheng wu Gong Cheng xue bao= Chinese Journal of Biotechnology, 36(8), 1640-1649. https://doi.org/10.13345/j.cjb.190566
Kamel, S. & A Khattab, T. (2020). Recent advances in cellulose-based biosensors for medical diagnosis. Biosensors, 10(6), 67. http://dx.doi.org/10.3390/bios10060067
Kang, C. H. & So, J. S. (2016). Heavy metal and antibiotic resistance of ureolytic bacteria and their immobilization of heavy metals. Ecological Engineering, 97, 304-312. https://doi.org/10.1016/j.ecoleng.2016.10.016
Kappaun, K., Piovesan, A. R., Carlini, C. R. & Ligabue-Braun, R. (2018). Ureases: Historical aspects, catalytic, and non-catalytic properties–A review. Journal of Advanced Research, 13, 3-17. https://doi.org/10.1016/j.jare.2018.05.010
Karplus, P. A., Pearson, M. A. & Hausinger, R. P. (1997). 70 years of crystalline urease: what have we learned?. Accounts of Chemical Research, 30(8), 330-337. https://doi.org/10.1021/ar960022j
Kataria, R. & Khatkar, A. (2019). Molecular docking of natural phenolic compounds for the screening of urease inhibitors. Current Pharmaceutical Biotechnology, 20(5), 410-421. https://doi.org/10.2174/13892010206661904 09110948
Kayastha, A. M. (2019). Immobilization of Urease on DEAE-Cellulose Strips for One Step Urea Detection. Annals of the National Academy of Medical Sciences (India), 55(01), 024-027. DOI: 10.1055/s-0039-1694076
Khan, Y. M., Munir, H. & Anwar, Z. (2019). Optimization of process variables for enhanced production of urease by indigenous Aspergillus niger strains through response surface methodology. Biocatalysis and Agricultural Biotechnology, 20, 101202. https://doi.org/10.1016/j.bcab.2019.101202
Konieczna, I., Zarnowiec, P., Kwinkowski, M., Kolesinska, B., Fraczyk, J., Kaminski, Z., & Kaca, W. (2012). Bacterial urease and its role in long-lasting human diseases. Current Protein and Peptide Science, 13(8), 789-806.
Krajewska, B. (2009). Ureases. II. Properties and their customizing by enzyme immobilizations: A review. Journal of Molecular Catalysis B: Enzymatic, 59(1-3), 22-40. https://doi.org/10.1016/j.molcatb.2009.01.004
Krajewska, B. (2016). A combined temperature-pH study of urease kinetics. Assigning pKa values to ionizable groups of the active site involved in the catalytic reaction. Journal of Molecular Catalysis B: Enzymatic, 124, 70-76. https://doi.org/10.1016/j.molcatb.2015.11.021
Krajewska, B. (2018). Urease-aided calcium carbonate mineralization for engineering applications: A review. Journal of Advanced Research, 13, 59-67. https://doi.org/10.1016/j.jare.2017.10.009
Kumar, S. (2017). Soybean (Glycine max) urease: steady state kinetics, stability and thermal inactivation studies. Journal of Proteins & Proteomics, 8(2), 85-92.
Kumari, D., Qian, X. Y., Pan, X., Achal, V., Li, Q. & Gadd, G. M. (2016). Microbially-induced carbonate precipitation for immobilization of toxic metals. Advances in applied microbiology, 94, 79-108. https://doi.org/10.1016/bs.aa mbs.2015.12.002
Kumari, J. A. & Rao, P. C. (2017). Effect of Temperature on Soil Enzyme Urease Activity-productivity. College of Agriculture, Rajendra Nagar, Hyderabad, In, 5(4), 65-72. https://doi.org/10.20546/ijcmas.2017.611.206
Kutlu, N., İspirli Doğaç, Y., Deveci, I. & Teke, M. (2020). Urease immobilized electrospun PVA/chitosan nanofibers with improved stability and reusability characteristics: an application for removal of urea from artificial blood serum. Preparative Biochemistry & Biotechnology, 50(5), 425-437. https://doi.org/10.1080/10826068.2019.1679175
Le, X., Shang, H., Yan, H., Zhang, J., Lu, W., Liu, M. & Chen, T. (2021). A Urease‐Containing Fluorescent Hydrogel for Transient Information Storage. Angewandte Chemie, 133(7), 3684-3690. https://doi.org/10.1002/anie.202011645
Lin, W. F., Hu, R. Y., Chang, H. Y., Lin, F. Y., Kuo, C. H., Su, L. H. & Peng, H. L. (2022). The role of urease in the acid stress response and fimbriae expression in Klebsiella pneumoniae CG43. Journal of Microbiology, Immunology and Infection. DOI: https://doi.org/10.1016/j.jmii.2022.0 2.002
Liu, C., Xiao, Y., Xiao, Y. & Li, Z. (2021a). Marine urease with higher thermostability, pH and salinity tolerance from marine sponge-derived Penicillium steckii S4-4. Marine Life Science & Technology, 3(1), 77-84.
Liu, M. L., Li, W. Y., Fang, H. L., Ye, Y. X., Li, S. Y., Song, W. Q. & Zhu, H. L. (2021b). Synthesis and Biological Evaluation of Dithiobisacetamides as Novel Urease Inhibitors. Chem Med Chem, 17(2), e202100618. https://doi.org/10.1002/cmdc.202100618
Liu, Q., Jin, X., Fang, F., Li, J., Du, G. & Kang, Z. (2019). Food-grade expression of an iron-containing acid urease in Bacillus subtilis. Journal of biotechnology, 293, 66-71. https://doi.org/10.1016/j.jbiotec.2019.01.012
Liu, Y., Dai, Q., Jin, X., Dong, X., Peng, J., Wu, M., ... & Xing, B. (2018). Negative impacts of biochars on urease activity: high pH, heavy metals, polycyclic aromatic hydrocarbons, or free radicals? Environmental science & technology, 52(21), 12740-12747. https://doi.org/10.1021/acs.est.8b00672
Loharch, S. & Berlicki, L. (2022). Rational Development of Bacterial Ureases Inhibitors. The Chemical Record, e202200026. https://doi.org/10.1002/tcr.202200026
Mahmud, J. A., Bhuyan, M. H. M., Anee, T. I., Nahar, K., Fujita, M. & Hasanuzzaman, M. (2019). Reactive oxygen species metabolism and antioxidant defense in plants under metal/metalloid stress. In Plant Abiotic Stress Tolerance, 221-257. Springer, Cham. DOI: 10.1007/978-3-030-06118-0_10
Maier, R. J. & Benoit, S. L. (2019). Role of nickel in microbial pathogenesis. Inorganics, 7(7), 80. https://doi.org/10.33 90/inorganics7070080
Mamidala, R., Bhimathati, S. R. S. & Vema, A. (2021). Discovery of Novel Dihydropyrimidine and hydroxamic acid hybrids as potent Helicobacter pylori Urease inhibitors. Bioorganic Chemistry, 114, 105010.  https://doi.org/10.1016/j.bioorg.2021.105010
Maroney, M. J. & Ciurli, S. (2021, November). Nickel as a virulence factor in the Class I bacterial carcinogen, Helicobacter pylori. In Seminars in Cancer Biology, 76, 143-155. Academic Press. https://doi.org/10.1016/j.semcancer.202 1.04.009
Mazzei, L., Musiani, F. & Ciurli, S. (2017). The Biological Chemistry of Nickel. Royal Society of Chemistry, 60-97.
Mazzei, L., Musiani, F., & Ciurli, S. (2020). The structure-based reaction mechanism of urease, a nickel dependent enzyme: tale of a long debate. JBIC Journal of Biological Inorganic Chemistry, 25(6), 829-845.
Mazzei, L., Musiani, F. & Ciurli, S. (2021). Correction to: The structure-based reaction mechanism of urease, a nickel dependent enzyme: tale of a long debate. Journal of Biological Inorganic Chemistry, 26(1), 171. https://doi.org/10.1007%2Fs00775-021-01855-x
Menegassi, A., Da Silva e Silva, R., Carlini, C. R., Mithofer, A. & Becker-Ritt, A. B. (2018). Analysis of herbivore stress-and phytohormone-mediated urease expression in soybean (Glycine max). Journal of Plant Growth Regulation, 37(2), 419-425.
Mostafa, A. M., Barton, S. J., Wren, S. P. & Barker, J. (2021). Review on molecularly imprinted polymers with a focus on their application to the analysis of protein biomarkers. TrAC Trends in Analytical Chemistry, 144, 116431. https://doi.org/10.1016/j.trac.2021.116431
Nabavi-Rad, A., Azizi, M., Jamshidizadeh, S., Sadeghi, A., Aghdaei, H. A., Yadegar, A. & Zali, M. R. (2022). The Effects of Vitamins and Micronutrients on Helicobacter pylori Pathogenicity, Survival, and Eradication: A Crosstalk between Micronutrients and Immune System. Journal of Immunology Research, 2022, 1-22. DOI: https://doi.org/10.1155/2022/4713684
Nam, I. H., Roh, S. B., Park, M. J., Chon, C. M., Kim, J. G., Jeong, S. W. ... & Yoon, M. H. (2016). Immobilization of heavy metal contaminated mine wastes using Canavalia ensiformis extract. Catena, 136, 53-58. https://doi.org/10.1016/j.catena.2015.07.019
Navanietha Krishnaraj, R., David, A. & Sani, R. K. (2017). Fundamentals of enzymatic processes. In Extremophilic Enzymatic Processing of Lignocellulosic Feedstocks to Bioenergy, 5-29. Springer, Cham.
Nhung, H. T. N., Loan, H. T. T. & Lam, T. B. (2019). EFFECTS OF GERMINATION TIME OF SOYBEAN TO THE ACTIVITY OF SOYBEAN UREASE ENZYME. Bioresearch Communications-(BRC), 5(1), 606-609.
Noh, K. G. & Park, S. Y. (2018). Biosensor Array of Interpenetrating Polymer Network with Photonic Film Templated from Reactive Cholesteric Liquid Crystal and Enzyme‐Immobilized Hydrogel Polymer. Advanced Functional Materials, 28(22), 1707562. https://doi.org/10.1002/adfm.2 01707562
Odoemene, C. A. & Adiri, C. O. (2019). Catheter associated urinary tract infection offending pathogens, antimicrobial sensitivity, and complications. Nigerian Journal of Surgical Sciences, 29(1), 6. DOI: 10.4103/njss.njss_6_20
Oleńska, E., Małek, W., Wójcik, M., Swiecicka, I., Thijs, S. & Vangronsveld, J. (2020). Beneficial features of plant growth-promoting rhizobacteria for improving plant growth and health in challenging conditions: A methodical review. Science of the Total Environment, 743, 140682. https://doi.org/10.1016/j.scitotenv.2020.140682
Palombo, M., Bonucci, A., Etienne, E., Ciurli, S., Uversky, V. N., Guigliarelli, B. & Zambelli, B. (2017). The relationship between folding and activity in UreG, an intrinsically disordered enzyme. Scientific Reports, 7(1), 1-10.
Park, S. S., Choi, S. G. & Nam, I. H. (2014). Effect of plant-induced calcite precipitation on the strength of sand. Journal of Materials in Civil Engineering, 26(8), 06014017.
Patra, A. K. & Aschenbach, J. R. (2018). Ureases in the gastrointestinal tracts of ruminant and monogastric animals and their implication in urea-N/ammonia metabolism: a review. Journal of Advanced Research, 13, 39-50. https://doi.org/10.1016/j.jare.2018.02.005
Phillips, A. J., Gerlach, R., Lauchnor, E., Mitchell, A. C., Cunningham, A. B. & Spangler, L. (2013). Engineered applications of ureolytic biomineralization: a review. Biofouling, 29(6), 715-733. https://doi.org/10.1080/0 8927014.2013.796550
Phipps, W. S., Jones, P. M. & Patel, K. (2019). Amino and organic acid analysis: Essential tools in the diagnosis of inborn errors of metabolism. Advances in Clinical Chemistry, 92, 59-103. https://doi.org/10.1016/bs.acc.20 19.04.0 01
Proshlyakov, D. A., Farrugia, M. A., Proshlyakov, Y. D. & Hausinger, R. P. (2021). Iron-containing ureases. Coordination Chemistry Reviews, 448, 214190. https://doi.org/10.1016/j.ccr.2021.214190
Qiao, N., Du, G., Zhong, X. & Sun, X. (2021). Recombinant lactic acid bacteria as promising vectors for mucosal vaccination. In Exploration, 1(2), 20210026). https://doi.org/10.1002/EXP.20210026
Qin, Y. & Cabral, J. M. (2002). Review properties and applications of urease. Biocatalysis and Biotransformation, 20(1), 1-14. https://doi.org/10.1080/1024242021 0154
Quiroz-Valenzuela, S., Sukuru, S. C. K., Hausinger, R. P., Kuhn, L. A., & Heller, W. T. (2008). The structure of urease activation complexes examined by flexibility analysis, mutagenesis, and small-angle X-ray scattering. Archives of Biochemistry and Biophysics, 480(1), 51-57.
Rajendran, R., Pandi, A., Ramchary, A., Thiagarajan, H., Panneerselvam, J., Niraikulam, A. & Ramudu, K. N. (2019). Extracellular urease from Arthrobacter creatinolyticus MTCC 5604: scale up, purification and its cytotoxic effect thereof. Molecular Biology Reports, 46(1), 133-141.
Rana, M. A., Mahmood, R. & Ali, S. (2021). Soil urease inhibition by various plant extracts. Plos one,16(10),e0258568. https://doi.org/10.1371/journal.pone.02 58568
Rashid, M., Rafique, H., Roshan, S., Shamas, S., Iqbal, Z., Ashraf, Z., ... & Asad, M. H. H. B. (2020). Enzyme Inhibitory Kinetics and Molecular Docking Studies of Halo-Substituted Mixed Ester/Amide-Based Derivatives as Jack Bean Urease Inhibitors. BioMed Research International, 2020, 1-11. DOI: https://doi.org/10.1155/2020/8867407
Rego, Y. F., Queiroz, M. P., Brito, T. O., Carvalho, P. G., de Queiroz, V. T., de Fatima, A. & Macedo Jr, F. (2018). A review on the development of urease inhibitors as antimicrobial agents against pathogenic bacteria. Journal of Advanced Research, 13, 69-100. https://doi.org/10.1016/j.jare.2018.05.003
Rutherford, J. C. (2014). The emerging role of urease as a general microbial virulence factor. PLoS Pathogens, 10(5), e1004062. https://doi.org/10.1371/journal.ppat.100 4062
Sá, C. A., Vieira, L. R., Almeida Filho, L. C. P., Real-Guerra, R., Lopes, F. C., Souza, T. M., ... & Farias, D. F. (2020). Risk assessment of the antifungal and insecticidal peptide Jaburetox and its parental protein the Jack bean (Canavalia ensiformis) urease. Food and Chemical Toxicology, 136, 110977. https://doi.org/10.1016/j.fct.2019.11 0977
Saeed, A., Larik, F. A., Channar, P. A., Mehfooz, H., Ashraf, M. H., Abbas, Q., ... & Seo, S. Y. (2017). An expedient synthesis of N‐(1‐(5‐mercapto‐4‐((substituted benzylidene) amino)‐4H‐1, 2, 4‐triazol‐3‐yl)‐2‐phenylethyl) benzamides as jack bean urease inhibitors and free radical scavengers: Kinetic mechanism and molecular docking studies. Chemical Biology & Drug Design, 90(5), 764-777. https://doi.org/10.1111/cbdd.12998
Saeedfar, K., Heng, L. Y., Ling, T. L. & Rezayi, M. (2013). Potentiometric urea biosensor based on an immobilised fullerene-urease bio-conjugate. Sensors, 13(12), 16851-16866. https://doi.org/10.3390/s131216851
Saem, A. S. M., Hossain, M. T., Chandan, D. H. N., Mottaleb, M. A. & Alam, M. T. (2015). Single-Step Purification of Urease from Canavalia Gladiata Seeds. International Journal of Pharmaceutical Sciences and Research, 6(2), 845. DOI: 10.13040/IJPSR.0975-8232.6(2).845-49
Safitri, E., Heng, L. Y., Ahmad, M. & Ling, T. L. (2017). Fluorescence bioanalytical method for urea determination based on water soluble ZnS quantum dots. Sensors and Actuators B: Chemical, 240, 763-769. https://doi.org/10.1016/j.snb.2016.08.129
Sahoo, B., Sahu, S. K. & Pramanik, P. (2011). A novel method for the immobilization of urease on phosphonate grafted iron oxide nanoparticle. Journal of Molecular Catalysis B: Enzymatic, 69(3-4), 95-102. https://doi.org/10.1016/j.molcatb.2011.01.001
San, H. Y. (2019). Purification, immobilization and application of urease enzyme from pigeon pea seeds (Cajanus cajan L.). Journal of the Myanmar Academy of Arts and Science, 17(1A), 241.
Santoro, C., Garcia, M. J. S., Walter, X. A., You, J., Theodosiou, P., Gajda, I., ... & Ieropoulos, I. (2020). Urine in bioelectrochemical systems: an overall review. ChemElectroChem, 7(6), 1312-1331. https://doi.org/10.1002/celc.201901995
Sarfraz, M., Ahmad, S., Tariq, M. I. & Qaisar, M. N. (2019). Synthesis, In Silico Study and Antiurease Potential of Imine Derivatives. Iranian Journal of Science and Technology, Transactions A: Science, 43(4), 1513-1521.
Saxena, A., Bhattacharya, A., Kumar, S., Epstein, I. R. & Sahney, R. (2017). Biopolymer matrix for nano-encapsulation of urease–A model protein and its application in urea detection. Journal of Colloid and Interface Science, 490, 452-461. https://doi.org/10.1016/j.jcis.20 16.11.030
Schafer, M., Brauler, V. & Ulber, R. (2018). Bio-sensing of metal ions by a novel 3D-printable smartphone spectrometer. Sensors and Actuators B: Chemical, 255, 1902-1910. https://doi.org/10.1016/j.snb.2017.08.207
Shah, S. R., Shah, Z., Khiat, M., Khan, A., Hill, L. R., Khan, S. & Al-Harrasi, A. (2020). Complexes of N-and O-Donor Ligands as Potential Urease Inhibitors. ACS Omega, 5(17), 10200-10206. https://doi.org/10.1021/acsomega.0c01089
Shallsuku, P. & Kariuki, D. N. (2021). Improved stability of urease by covalent linkage to poly (tetrafluoroethylene). Bioscience Research Journal, 14(3).
Silakari, P. & Piplani, P. (2020). p-Benzoquinone as a privileged scaffold of pharmacological significance: A Review. Mini Reviews in Medicinal Chemistry, 20(16), 1586-1609. https://doi.org/10.2174/1389557520666200 429101 451
Singh, R. K., Srivastava, P. K. & Prakash, O. (2021). Biosynthesis of gold nanoparticles using leaf extract of Salvadora persica and its role in boosting urease performance via immobilization. Journal of Plant Biochemistry and Biotechnology, 1-6.
Sujoy, B. & Aparna, A. (2013). Enzymology, immobilization and applications of urease enzyme. Int. Res. J. Biol. Sci, 2(6), 51-56.
Sumner, J. B. (1926). The recrystallization of urease. Journal of Biological Chemistry, 70(1), 97-98.
Svane, S., Sigurdarson, J. J., Finkenwirth, F., Eitinger, T. & Karring, H. (2020). Inhibition of urease activity by different compounds provides insight into the modulation and association of bacterial nickel import and ureolysis. Scientific Reports, 10(1), 1-14.
Toplis, B., Bosch, C., Schwartz, I. S., Kenyon, C., Boekhout, T., Perfect, J. R. & Botha, A. (2020). The virulence factor urease and its unexplored role in the metabolism of Cryptococcus neoformans. FEMS Yeast Research, 20(4), foaa031. https://doi.org/10.1093/femsyr/foaa031
Toth, K., Nagy, G. & Pungor, E. (2018). Analytical methods involving ion-selective. Ion Selective Electrode Method, 2(2), 65.
Tran Trung, H., Truong Thi Huynh, H., Nguyen Thi Thuy, L., Nguyen Van Minh, H., Thi Nguyen, M. N. & Luong Thi, M. N. (2020). Growth-Inhibiting, Bactericidal, Antibiofilm, and Urease Inhibitory Activities of Hibiscus rosa sinensis L. Flower Constituents toward Antibiotic Sensitive-and Resistant-Strains of Helicobacter pylori. ACS Omega, 5(32), 20080-20089. https://doi.org/10.1021%2Facsomeg a.0c01640
Veaudor, T., Cassier-Chauvat, C. & Chauvat, F. (2019). Genomics of urea transport and catabolism in cyanobacteria: biotechnological implications. Frontiers in microbiology, 2052. https://doi.org/10.3389/fmicb.2019.02052
Verma, N., Saini, R., Gahlaut, A. & Hooda, V. (2020). Stabilization and optimization of purified diamine oxidase by immobilization onto activated PVC membrane. Food Biotechnology, 34(4), 306-322. https://doi.org/10.108 0/08905436.2020.1833912
Vijayamma, R., Kalarikkal, N. & Thomas, S. (2020). Layered double hydroxide based nanocomposites for biomedical applications. In Layered Double Hydroxide Polymer Nanocomposites, 677-714. Woodhead Publishing. https://doi.org/10.1016/B978-0-08-101903-0.00016-7
Wang, T., Wang, S., Tang, X., Fan, X., Yang, S., Yao, L. & Han, H. (2020). Isolation of urease-producing bacteria and their effects on reducing Cd and Pb accumulation in lettuce (Lactuca sativa L.). Environmental Science and Pollution Research, 27(8), 8707-8718.
Wang, Y. Q., Wang, S. S., Zhu, J., Wang, L., Jiang, B. H. & Zhao, W. J. (2016). Determination of urea content in urea cream by centrifugal partition chromatography. Journal of Food and Drug Analysis, 24(2), 399-405. https://doi.org/10.1016/j.jfda.2015.10.005
Wenjing, C., Yunlong, H., Zhigang, W. & Weihui, X. (2021). Phthalic Acid Esters Increased Activation of Urease by Altering the Molecular Conformation. Polish Journal of Environmental Studies, 30(6), 5863-5869. https://doi.org/10.15244/pjoes/135826
Wernimont, S. M., Radosevich, J., Jackson, M. I., Ephraim, E., Badri, D. V., MacLeay, J. M., ... & Suchodolski, J. S. (2020). The effects of nutrition on the gastrointestinal microbiome of cats and dogs: impact on health and disease. Frontiers in Microbiology, 11, 1266. https://doi.org/10.3389/fmicb.2020.01266
Wiebke-Strohm, B., Ligabue-Braun, R., Rechenmacher, C., De Oliveira-Busatto, L. A., Carlini, C. R. & Bodanese-Zanettini, M. H. (2016). Structural and transcriptional characterization of a novel member of the soybean urease gene family. Plant Physiology and Biochemistry, 101, 96-104. https://doi.org/10.1016/j.plaphy.2016.01.023
Wu, G. (2022). Nutrition and metabolism: Foundations for animal growth, development, reproduction, and health. In Recent Advances in Animal Nutrition and Metabolism, 1-24. Springer, Cham.
Wu, H., Liang, Y., Shi, J., Wang, X., Yang, D. & Jiang, Z. (2013). Enhanced stability of catalase covalently immobilized on functionalized titania submicrospheres. Materials Science and Engineering: C, 33(3), 1438-1445. https://doi.org/10.1016/j.msec.2012.12.048
Yang, H., Cai, G., Lu, J. & Gómez Plaza, E. (2021). The production and application of enzymes related to the quality of fruit wine. Critical Reviews in Food Science and Nutrition, 61(10), 1605-1615. https://doi.org/10.1080/10 408398.2020.1763251
Yi, H., Zheng, T., Jia, Z., Su, T. & Wang, C. (2021). Study on the influencing factors and mechanism of calcium carbonate precipitation induced by urease bacteria. Journal of Crystal Growth, 564, 126113. https://doi.org/10.1016/j.jcrysgro.2021.126113
Yockey, J., Andres, L., Carson, M., Ory, J. J. & Reese, A. J. (2019). Cell envelope integrity and capsule characterization of Rhodotorula mucilaginosa strains from clinical and environmental sources. Msphere, 4(3), e00166-19. https://doi.org/10.1128/mSphere.00166-19
Zaushitsyna, O., Berillo, D., Kirsebom, H. & Mattiasson, B. (2014). Cryostructured and crosslinked viable cells forming monoliths suitable for bioreactor applications. Topics in Catalysis, 57(5), 339-348.
Zhang, J., Wen, K. & Li, L. (2021). Bio-modification of coal fly ash using urease-producing bacteria. Fuel, 286, 119386. https://doi.org/10.1016/j.fuel.2020.119386
Zhao, X., Du, G., Zou, H., Fu, J., Zhou, J. & Chen, J. (2013). Progress in preventing the accumulation of ethyl carbamate in alcoholic beverages. Trends in Food Science & Technology, 32(2), 97-107. https://doi.org/10.10 16/j.tifs.2013.05.009
Zhou, F., Yu, T., Du, R., Fan, G., Liu, Y., Liu, Z. & Cao, B. (2020). Clinical course and risk factors for mortality of adult in patients with COVID-19 in Wuhan, China: a retrospective cohort study. The lancet, 395(10229), 1054-1062. https://doi.org/10.1016/S0140-6736(20)30566-3
Zhu, G., Cheng, L., Qi, R., Zhang, M., Zhao, J., Zhu, L. & Dong, M. (2020). A metal-organic zeolitic framework with immobilized urease for use in a tapered optical fiber urea biosensor. Microchimica Acta, 187(1), 1-9.
Zucca, P. & Sanjust, E. (2014). Inorganic materials as supports for covalent enzyme immobilization: methods and mechanisms. Molecules, 19(9), 14139-14194. https://doi.org/10.3390/molecules190914139
Zusfahair, Z., Ningsih, D. R., Putri, D. & Fatoni, A. (2018). Partial purification and characterization of urease from black-eyed pea (Vigna unguiculata ssp unguiculata L.). Malaysian Journal of Fundamental and Applied Sciences, 14(1), 20-24. https://doi.org/10.11113/mjfas.v14 n1.749
Section
Research Articles

How to Cite

A review on distribution, properties, genetic organization, immobilisation and applications of urease . (2022). Journal of Applied and Natural Science, 14(4), 1413-1429. https://doi.org/10.31018/jans.v14i4.3668