Article Main

D. Suneel S. Vincent V. Babu Rajendra Prasad R. Anandham M. Raveendran S. Rajeeswari

Abstract

Climate change mainly alters the plant phyllosphere and rhizosphere resource allocations. Compared with shoot parameters, there is less information about how roots, especially root system architecture (RSA) and their interactions with others, may respond to elevated temperature changes. These responses could greatly influence different species acquisition of resources and their competition with their neighbours. The main aim of this experiment was to evaluate the effects of ambient temperature (T1) and elevated temperature (+4oC) (T2) in Open-top chamber (OTC) on root traits and microbial interaction changes in cotton (Gossypium hirsutum L.). A pot experiment was conducted at the Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore, during 2020-2021 to investigate the root traits and microbial interactions. Cotton varieties, namely KC3, SVPR6, TSH325, TSH357 and TSH375 were screened at the seedling level for cellular thermo tolerance and further, at the root level, these selected varieties were studied against the elevated temperature condition for 10 days in OTC during the stage of flowering to boll development period along with control temperature condition. Root interactions' intensity and direction may fluctuate as a result of variations in RSA responses between species. Negative root interactions could become more intense under high temperature circumstances and species with bigger roots and greater early root growth had stronger competitive advantages. The present findings showed that elevated temperatures promote various microbial growths in the geothermal regions, enhancing the root angle and root length of cotton species. Among the genotypes, KC3 and SVPR6 performed better under elevated temperatures. 

Article Details

Article Details

Keywords

Cotton, elevated temperature, microbial interaction, OTC, Root traits

References
Acosta-Martinez, V., Cotton, J., Gardner, T., Moore-Kucera, J., Zak, J., Wester, D. & Cox, S. (2014). Predominant bacterial and fungal assemblages in agricultural soils during a record drought/heat wave and linkages to enzyme activities of biogeochemical cycling. Applied Soil Ecology, 84, 69-82. https://doi.org/10.1016/j.apsoil.201 4.06.005
Allison, S. D. & Martiny, J. B. (2008). Resistance, resilience, and redundancy in microbial communities. Proceedings of the National Academy of Sciences, 105 (supplement_1), 11512-11519. https://doi.org/10.1073/pnas.0801925105
Barreiro, A., Lombao, A., Martín, A., Cancelo-González, J., Carballas, T. & Díaz-Raviña, M. (2020). Soil heating at high temperatures and different water content: effects on the soil microorganisms. Geosciences, 10(9), 355. https://doi.org/10.3390/geosciences10090355
Belter, P. R., & Cahill, J. F. (2015). Disentangling root system responses to neighbours: identification of novel root behavioural strategies. Aob plants, 7. https://doi.org/10.1093/aobpla/plv059
Berard, A., Sassi, M. B., Kaisermann, A. & Renault, P. (2015). Soil microbial community responses to heat wave components: drought and high temperature. Climate Research, 66(3), 243-264. https://doi.org/10.3354/cr01343
Bita, C. E. & Gerats, T. (2013). Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Frontiers in plant science, 4, 273. https://doi.org/10.3389/fpls.2013.00273
Forde, B. G. (2014). Nitrogen signalling pathways shaping root system architecture: an update. Current opinion in plant biology, 21, 30-36. https://doi.org/10.1016/j.pbi.2014.06.004
Gray, S. B. & Brady, S. M. (2016). Plant developmental responses to climate change. Developmental biology, 419(1), 64-77. https://doi.org/10.1016/j.ydbio.2016.07.023
Hammer, G. L., Dong, Z., McLean, G., Doherty, A., Messina, C., Schussler, J. & Cooper, M. (2009). Can changes in canopy and/or root system architecture explain historical maize yield trends in the US corn belt?. Crop Science, 49(1), 299-312. https://doi.org/10.2135/cropsci2008.03.0152
Hartman, K. & Tringe, S. G. (2019). Interactions between plants and soil shaping the root microbiome under abiotic stress. Biochemical Journal, 476(19), 2705-2724. https://doi.org/10.1042/BCJ20180615
Khan, A. I., Khan, I. A. & Sadaqat, H. A. (2008). Heat tolerance is variable in cotton (Gossypium hirsutum L.) and can be exploited for breeding of better yielding cultivars under high temperature regimes. Pak. J. Bot, 40(5), 2053-2058.
Kuroyanagi, T. & Paulsen, G. M. (1988). Mediation of high‐temperature injury by roots and shoots during reproductive growth of wheat. Plant, Cell & Environment, 11(6), 517-523. https://doi.org/10.1111/j.1365-3040.1988.tb01790.x
Luo, H., Xu, H., Chu, C., He, F. & Fang, S. (2020). High temperature can change root system architecture and intensify root interactions of plant seedlings. Frontiers in plant Science, 11, 160. https://doi.org/10.3389/fpls.2020.0 0160
Meineri, E., Skarpaas, O., Spindelböck, J., Bargmann, T. & Vandvik, V. (2014). Direct and size‐dependent effects of climate on flowering performance in alpine and lowland herbaceous species. Journal of vegetation science, 25(1), 275-286. https://doi.org/10.1111/jvs.12062
Mueller, K. E., Tilman, D., Fornara, D. A. & Hobbie, S. E. (2013). Root depth distribution and the diversity–productivity relationship in a long‐term grassland experiment. Ecology, 94(4), 787-793. https://doi.org/10.1890/12-1399.1
Nakamoto, T. & Oyanagi, A. (1994). The direction of growth of seminal roots of Triticum aestivum L. and experimental modification thereof. Annals of Botany, 73(4), 363-367. https://doi.org/10.1006/anbo.1994.1045
Navarro-García, F., Casermeiro, M. Á. & Schimel, J. P. (2012). When structure means conservation: effect of aggregate structure in controlling microbial responses to rewetting events. Soil Biology and Biochemistry, 44(1), 1-8. https://doi.org/10.1016/j.soilbio.2011.09.019
Nord, E. A. & Lynch, J. P. (2009). Plant phenology: a critical controller of soil resource acquisition. Journal of Experimental Botany, 60(7), 1927-1937. https://doi.org/1 0.10 93/jxb/erp018
Nagel, K. A., Kastenholz, B., Jahnke, S., Van Dusschoten, D., Aach, T., Mühlich, M. & Schurr, U. (2009). Temperature responses of roots: impact on growth, root system architecture and implications for phenotyping. Functional Plant Biology, 36(11), 947-959. https://doi.org/10.1071/FP09184
Pau, S., Detto, M., Kim, Y. & Still, C. J. (2018). Tropical forest temperature thresholds for gross primary productivity. Ecosphere, 9(7), e02311. https://doi.org/10.1002/ecs2.2311
Postma, J. A., Dathe, A. & Lynch, J. P. (2014). The optimal lateral root branching density for maize depends on nitrogen and phosphorus availability. Plant physiology, 166(2), 590-602. https://doi.org/10.1104/pp.113.233916
Prince, S. J., Valliyodan, B., Ye, H., Yang, M., Tai, S., Hu, W. & Nguyen, H. T. (2019). Understanding genetic control of root system architecture in soybean: Insights into the genetic basis of lateral root number. Plant, cell & environment, 42(1), 212-229. https://doi.org/10.1111/pce.13333
Rewald, B., Ephrath, J. E. & Rachmilevitch, S. (2011). A root is a root is a root? Water uptake rates of Citrus root orders. Plant, Cell & Environment, 34(1), 33-42. https://doi.org/10.1111/j.1365-3040.2010.02223.x
Schimel, J., Balser, T. C. & Wallenstein, M. (2007). Microbial stress-response physiology and its implications for ecosystem function. Ecology, 88(6), 1386-1394. https://doi.org/10.1890/06-0219
Singh, D. & Sirkar, K. K. (2012). Desalination of brine and produced water by direct contact membrane distillation at high temperatures and pressures. Journal of Membrane Science, 389, 380-388. https://doi.org/10.1016/j.memsci.20 11.11.003
Varney, G. T. & Canny, M. J. (1993). Rates of water uptake into the mature root system of maize plants. New Phytologist, 123(4), 775-786. https://doi.org/10.1111/j.1469-8137.1993.tb03789.x
Weyens, N., van der Lelie, D., Taghavi, S., Newman, L. & Vangronsveld, J. (2009). Exploiting plant–microbe partnerships to improve biomass production and remediation. Trends in biotechnology, 27(10), 591-598. https://doi.org/10.1016/j.tibtech.2009.07.006
Xia, Z., Zhang, G., Zhang, S., Wang, Q., Fu, Y. & Lu, H. (2021). Efficacy of root zone temperature increase in root and shoot development and hormone changes in different maize genotypes. Agriculture, 11(6), 477.
Zobel, R. W., Kinraide, T. B. & Baligar, V. C. (2007). Fine root diameters can change in response to changes in nutrient concentrations. Plant and Soil, 297(1), 243-254. http://www.jstor.org/stable/24128412
Section
Research Articles

How to Cite

Impact of elevated temperature on root traits and microbial interaction in cotton (Gossypium hirsutum L.) genotypes. (2022). Journal of Applied and Natural Science, 14(3), 849-860. https://doi.org/10.31018/jans.v14i3.3632