##plugins.themes.bootstrap3.article.main##

M. Vetrivel D. Durga Devi R. Sivakumar G. P. Chinnasamy

Abstract

Iron (Fe) deficiency is a major nutritional disorder in crops growing in calcareous soils. Varagu crop are more susceptible to (Fe) deficiency in the early stage of growth and the deficiency is exhibited as chlorosis developing interveinally in the new leaves.  The objective of the present study was to see the impact of different levels iron on mitigation of chlorosis in varagu, Paspalum scrobiculatum under calcareous soil and to investigate the influence of soil and foliar application of iron on growth, physiological and improvement of yield potential of varagu under calcareous soil condition. The varagu variety CO3 taken for this study The treatments comprised T1, NPK (44:22:0 kg ha-1) + 12.5 t  FYM/ha,T2, NPK (44:22:30 kg ha-1) +12.5 t FYM/ha, T3, T1 + Soil application of FeSO4   (25 kg ha-1), T4, T2 + Soil application of FeSO4 (25 kg ha-1), T5, T1 + Soil application of FeSO4 (50 kg ha-1), T6, T2 + Soil application of FeSO4 (50 kg ha-1), T7, T3 + Foliar spray of 0.5% FeSO4, T8, T4 + Foliar spray of 0.5% FeSO4, T9,T5 + Foliar spray of 0.5% FeSO4, T10,  T6 + Foliar spray of 0.5% FeSO4. During experimentation, morphological characteristics, growth attributes, physiological and biochemical components and biomass traits determined the mitigation of iron chlorosis. The iron deficiency in varagu was effectively controlled by T10, soil treatment 50 kg ha-1 FeSO4 and foliar spray of 0.5% FeSO4 applied on the 30th and 50th days after sowing through maintaining highest growth parameter values, maximum catalase and peroxidase activity and maintaining more chlorophyll content.

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Chlorosis, Ferrous sulphate iron deficiency, Paspalum scrobiculatum, Varagu

References
Agarwala, S. C., Bisht, S. S. & Sharma, C. P. (1977). Relative effectiveness of certain heavy metals in producing toxicity and symptoms of iron deficiency in barley. Canadian Journal of Botany, 55(10), 1299-1307.
Ali, S., Shah, S. & Arif, M. (2021). Agronomic Biofortification with Zinc and Iron for the Improvement of Wheat Phenology and Yield. Sarhad Journal of Agriculture, 37(3), 901-914.
Bhat, S., Nandini. C., Tippeswamy & Prabhakar (2017). Significance of Small Millets In Nutrition And Health -A Review, AICRP On Small Millets, Asian Journal of Dairy and Food Research, 37(1), 35-40.
Borowski, E. (2013). Uptake and transport of iron ions (Fe plus2, Fe plus3) supplied to roots or leaves in spinach (Spinacia oleracea L.) plants growing under different light conditions. Acta Agrobotanica, 66(2).
Bunkar, D. S., Goyal, S. K., Meena, K. K. & Kamalvanshi, V. (2021). Nutritional, Functional Role of Kodo Millet and its Processing: A Review. Int. J. Curr. Microbiol. App. Sci, 10(01), 1972-1985.
Dekock, P. C., Commisiong, K., Farmer, V. C., & Inkson, R. H. E. (1960). Interrelationships of catalase, peroxidase, hematin, and chlorophyll. Plant Physiology, 35(5), 599.
El-Wahab, A. & Mohamad, A. (2008). Effect of some trace elements on growth, yield and chemical constituents of Trachyspermum ammi L. (AJOWAN) plants under Sinai conditions. Research Journal of Agriculture and Biological Sciences, 4(6), 717-724.
Eskandari, H. (2011). The importance of iron (Fe) in plant products and mechanism of its uptake by plants. J. Appl. Environ. Biol. Sci., 1(10), 448-452.
Faldu, T. A., Kataria, G. K., Singh, C. K. & Paghadal, C. B. (2018). Influence of plant growth regulators on morphological and physiological parameters of groundnut (Arachis hypogaea L.) cv. GJG-9. Journal of Pharmacognosy and Phytochemistry, 7(3), 2341-2344.
Jacobson, L. & Oertli, J. J. (1956). The relation between iron and chlorophyll contents in chlorotic sunflower leaves. Plant Physiology, 31(3), 199.
Khattab, H. (2004). Metabolic and oxidative responses associated with exposure of Eruca sativa (Rocket) plants to different levels of selenium. Int J Agric Biol, 6, 1101-1106.
Li, J., Cao, X., Jia, X., Liu, L., Cao, H., Qin, W., & Li, M. (2021). Iron Deficiency Leads to Chlorosis Through Impacting Chlorophyll Synthesis and Nitrogen Metabolism in Areca catechu L. Frontiers in Plant Science, 12.
Mal, B., Padulosi, S., & Bala Ravi, S. (2010). Minor millets in South Asia: learnings from IFAD-NUS project in India and Nepal.
Nandhitha, G. K., Sivakumar, R. & Boominathan, P. (2018). Effect of salinity and alleviating role of PGRS and nutrients for improving the morphological traits of tomato cultivars under salinity condition. Nature Environment and Pollution Technology, 17(1), 107-110.
Pourgholam, M. O. H. S. E. N., Nemati, N. A. B. I. O. L. A. H. & Oveysi, M. E. Y. S. A. M. (2013). Effect of zinc and iron under the influence of drought on yield and yield components of rapeseed (Brassica napus). Annals of Biological Research, 4(4), 186-189.
Ragaee, Sanaa, El-Sayed M. Abdel-Aal & Maher Noaman (2006). Antioxidant activity and nutrient composition of selected cereals for food use. Food Chemistry 98, (1), 32-38
Reddy, A. R., Chaitanya, K. V. & Vivekanandan, M. (2004). Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. Journal of Plant Physiology, 161(11), 1189-1202.
Sairam, R. K., Deshmukh, P. S. & Shukla, D. S. (1997). Tolerance of drought and temperature stress in relation to increased antioxidant enzyme activity in wheat. Journal of Agronomy and Crop Science, 178(3), 171-178.
Saxena, R., Vanga, S. K., Wang, J., Orsat, V. & Raghavan, V. (2018). Millets for food security in the context of climate change: a review. Sustainability, 10, 2228.
Taiz, L. & Zeiger, E. (2002). Plant physiology, Third ed. Sinaur, under land.
Weisany, W., Sohrabi, Y., Heidari, G., Siosemardeh, A. & Ghassemi-Golezani, K. (2012). Changes in antioxidant enzymes activity and plant performance by salinity stress and zinc application in soybean ('Glycine max'L.). Plant Omics, 5(2), 60-67.
Yu, Q. & Rengel, Z. (1999). Micronutrient deficiency influences plant growth and activities of superoxide dismutases in narrow-leafed lupins. Annals of Botany, 83(2), 175-182.
Section
Research Articles

How to Cite

Impact of different levels of iron on mitigation of iron chlorosis in varagu CO 3 (Paspalum scrobiculatum. L) . (2022). Journal of Applied and Natural Science, 14(SI), 206-212. https://doi.org/10.31018/jans.v14iSI.3610