Pandi Arun Kumar Kannan Chozhan Periyasamy Dhevagi Santiago Mahimairaja Rajarathinam Prabhu Ramesh Poornima


Lignocellulosic waste materials are recalcitrant in nature due to their interconnected complex polymer. Hence, composting of this type of lignocellulosic waste material is time consuming. This study aimed to compare the efficiency of effective microorganisms (EM) and biocompost in enhancing the decomposition of coconut waste.. A windrow heap of 3 x 2 x 1.5 m was prepared with alternate layers of coconut waste and cow dung. Two percent of effective microorganisms and biocompost were augment in each heap and the changes in the nutrient status of the compost across different composting time periods (15, 30, 45, 60, 75 and 90 days) were studied. It was observed that augmentation of both effective microorganisms and biocompost significantly reduced the organic carbon, while the total nitrogen, phosphorus and potassium increased on successive days of composting. At the end of study period, application of effective microoganisms (EM) reduced the organic carbon by 30.97%; and recorded the highest total nitrogen (1.20±0.024%), phosphorus (0.21±0.003%) and potassium (1.21±0.016%) content. Furthermore, augmenting effective microorganisms was highly effective, and the compost maturity was attained on the 60th day with a CN ratio of 17.8:1. The compost maturity test also validated that the effective microorganisms were more effective than biocompost in improving the rate of degradation of coconut waste and in producing mature compost of good quality.




Biocompost, Coconut wastes, Composting, Effective microorganisms (EM), Lignocellulosic material, Nutrient transformation

Adediran, J.A., Mnkeni, P.N.S., Mafu, N.C. & Muyima, N.Y.O. (2004). Changes in chemical properties and temperature during the composting of tobacco waste with other organic materials, and effects of resulting composts on lettuce (Lactuca sativa L.) and Spinach (Spinacea oleracea L.). Biological Agriculture and Horticulture, 22, 101 – 119. https://doi.org/10.1080/01448765.20 04.9754 994
Atiyeh, R. M., Arancon, N., Edward, C. A. & Metzger. T. D. (2000). Influence of earthworm processed pig manure on the growth and yield of greenhouse tomatoes. Bioresource Technology, 75, 175–180, Persian https://doi.org/10.1016/S0960-8524(00)00064-X
Baldrian, P. & Gabriel, J. (2003). Lignocellulose degradation by Pleurotus ostreatus in the presence of cadmium. FEMS Microbiology letters, 220 (2), 235-240. https://doi.org/10.1016/S0378-1097(03)00102-2
Bernal, M.P., Paredes, C., Sanchez–Monedero, M. A. & Cegarra, J. (1998). Maturity and stability parameters of composts prepared with a wide range of organic wastes. Bioresource Technology, 63, 91 – 98. https://doi.org/10.1 016/S0960-8524(97)00084-9
Bhardwaj, P. & Sharma, R. K. (2015). Vermicomposting efficiency of earthworm species from eastern Haryana. Journal of Entomology and Zoology Studies, 3(3), 191-195.
Bhuvaneshwari, S., Hettiarachchi, H. & Meegoda, J. N. (2019). Crop residue burning in India: policy challenges and potential solutions. International journal of environmental research and public health, 16(5), 832.
Bishop, P.L. & Godfrey, C. (1983). Nitrogen transformation during sludge composting. Biocycle, 24, 34 – 39.
CBD (2021). https://coconutboard.gov.in/Statistics.aspx (Accessed on 9th April, 2022)
Crawford, J.H. (2002). Review of composting. Process Biochemistry, 18, 14-15
De Bertoldi. M. & Zucconi, F. (1981). Biological evaluation of compost maturity. Biocycle, 22, 27-29.
Diaz, L.F., Savage, G. M., Eggerth L. L. & Golueke, C. G. (1993). Composting and recycling municipal solid waste. United State of America: Lewis Publishers pp: 327.
Diver, S. (2001). Nature farming and effective microorganisms. Retrieved from Rhizosphere II: publications, resource lists and web links from Steve Diver. Nature-Farm-EM. html. http://ncatark.uark.edu/~steved/Nature-Farm-EM.html
Garg, P., Gupta, A. & Satya, S. (2006). Vermicomposting of different types of waste using Eisenia foetida a comparative study. Bioresource Technology, 97(3), 391–395. https://doi.org/10.1016/j.biortech.2005.03.009
Greff, B., Szigeti, J., Nagy, Á., Lakatos, E. & Varga, L. (2022). Influence of microbial inoculants on co-composting of lignocellulosic crop residues with farm animal manure: A review. Journal of environmental management, 302, 114088.
Hachicha, S., Sellami, F., Cegarra, J., Hachicha, R., Drira, N., Medhioub, K. & Ammar, E. (2009). Biological activity during co-composting of sludge issued from the OMW evaporation ponds with poultry manure—Physico-chemical characterization of the processed organic matter. Journal of Hazardous Materials, 162(1), 402-409.
Harindintwali, J. D., Zhou, J. & Yu, X. (2020). Lignocellulosic crop residue composting by cellulolytic nitrogen-fixing bacteria: a novel tool for environmental sustainability. Science of the Total Environment, 715, 136912.
Hubbe, M. A., Nazhad, M. & Sánchez, C. (2010). Composting as a way to convert cellulosic biomass and organic waste into high-value soil amendments: A review. BioResources, 5(4), 2808-2854.
Jackson, M.L. 1973. Soil chemical analysis. Prentice Hall of India, New Delhi. p.498.
Joshi, H., Somduttand, C. P. & Mundra, S. L. (2019). Role of effective microorganisms (EM) in sustainable agriculture. International Journal of Current Microbiology and Applied Sciences, 8(3), 172-181.
Jusoh, M. L.C., Manaf, L. A. & Latiff, P. A. (2013). Composting of rice straw with effective microorganisms (EM) and its influence on compost quality. Iranian Journal of Environmental Health Sciences and Engineering, 10, 17 – 26. http://doi.org/10.1186/1735-2746-10-17
Juste, C., Solda, P. & M. Lineres. (1987). Factors influencing the agronomic value of city refuse compost. In: Compost: Production, Quality and Use, Elsevier Applied Science; London, U.K. pp.388-398.
Lossin, R. D. (1970). Compost studies Part I., Compost Sci., 11, 16-21.
Lynd, L. R., Weimer, P. J., Van Zyl, W. H. & Pretorius, I. S. (2002). Microbial cellulose utilization: fundamentals and biotechnology. Microbiology and molecular biology reviews, 66(3), 506-577.
Mahdi, S.S., Hassan, G.I., Samoon, S.A., Rathert, H.A. & Dar, S.A. (2007). Biofertilizers in organic agriculture. Journal of Phytological Research, 2, 42-54.
Makan, A., Assobhei, O. & Mountadar, M. (2012). Effect of initial moisture content on the in-vessel composting under air pressure of organic fraction of municipal solid waste in morocco. Iranian Journal of Environmental Health Sciences and Engineering, 10, 3 – 11. http://doi.org/10.1186/1735-2746-10-3
Mathews, S. & Gowrilekshmi, R. (2016). Solid Waste Management using Effective Microorganisms (EM) Technology. International Journal of Current Microbiology and Applied Sciences, 5, 804 – 815. http://dx.doi.org/10.20546/ijcmas.2016.507.093
Mathur, S. P., Owenl, G., Dinel, H. & Schnitzer, M. (1993). Determination of compost maturity. Biological Agriculture and Horticulture, 10, 65-85.
Moss, L.H., Epstein, E., Logan, T.J., Frank, S.D. & Scott, K. (2002). Evaluating risks and benefits of soil amendments used in agriculture: Water Environment Research Foundation Alexandria, VA.
Mupondi, L.T., Mnkeni, P. N. S. & Brutsch, M. O. (2006). The Effects of Goat Manure, Sewage Sludge and Effective Miroorganisms on the Composting of Pine Bark. Compost Science and Utilization, 14(3), 201 – 210. http://doi.org/10.1080/1065657X.2006.10702284
Nathaniel, O., Sam, A. R. M., Lim, N. H. A. S., Adebisi, O. & Abdulkareem, M. (2020). Biogenic approach for concrete durability and sustainability using effective microorganisms: A review. Construction and Building Materials, 261, 119664.
Nattudurai, G., Ezhil Vendan, S., Ramachandran, P.V. & Lingathurai, S. (2014). Vermicomposting of coirpith with cow dung by Eudrilus eugeniae Kinberg and its efficacy on the growth of Cyamopsis tetragonaloba (L) Taub. Journal of the Saudi Society of Agricultural Sciences, 13, 23 – 27. https://doi.org/10.1016/j.jssas.2012.12.003
Ong, H.K., Chew, B. H. & Suhaimi, M. (2001). Effect of Effective Microorganisms on composting characteristics of chicken manure. J. Trop. Agric. In addition, Fd. Sc., 29(2), 189 – 196.
Pakvilai, N. (2021). The Potential of Biogas Production with Co-Digestion between Food Waste and Cow Dung. Trends in Sciences, 18(24), 1410-1410.
Pascual, J., Ayuso, M., Garcia, C. & Hernandez, T. (1997). Characterization of urban wastes according to fertility and phytotoxicity parameters. Waste Management Research, 15, 103 - 112.
Polprasert, C. (1996). Organic waste recycling. Technology and management. West Sussex, England: IWA Publishing; 1996.
Rastogi, M., Nandal, M. & Khosla, B. (2020). Microbes as vital additives for solid waste composting. Heliyon, 6(2), e03343.
Roca-Perez, L., Martinez, C., Marcilla, P. & Buloda. R. (2009). Composting rice straw with sewage sludge and compost effects on the soil–plant system. Chemosphere, 75, 781–787. https://doi.org/10.1016/j.chemosphere.200 8.12.058
Sanchez-Monedero, M.A. (2001). Composting and Compost Utilization for Agronomic and Container crops. Biodegradation, 13, 361.
Sandeep, A., Dharambir, S., Yadav, J. and Urmila, K. (2017). Assessment of nutrient status of vermicompost of leaf litter using Eisenia fetida. Journal of Entomology and Zoology Studies, 5(2), 1135 – 1137.
Shyamsundar, P., Springer, N. P., Tallis, H., Polasky, S., Jat, M. L., Sidhu, H. S. & Somanathan, R. (2019). Fields on fire: Alternatives to crop residue burning in India. Science, 365(6453), 536-538.
Sibomana, R., Kaboneka, S., Bakundukize, N., Nibashikire, C., Bukobero, L., Niyonkuru, D. & Jamubandi, F. (2021). Experimental Study and Comparative Effects of Bean (Phaseolus vulgaris L.) crop residues and effective Microorganisms (EM) on the Fertilizer value of Coffee Pulp Compost. International Journal of Advances in Scientific Research and Engineering (IJASRE), 7(12), 45-56.
Sommer, S. G. (2001). Effect of composting on nutrient loss and nitrogen availability of cattle deep litter. Eur. J. Agron., 14, 123–133. https://doi.org/10.1016/S1161-0301(00)00087-3
Sreenivasan, E. (2013). Evaluation of effective microorganisms technology in industrial wood waste management. Int. J. Adv. Engg. Tech., 4(3), 21-22.
Sundberg, C., Yu, D., Franke-Whittle, I., Kauppi, S., Smårs, S., Insam, H. & Jönsson, H. (2013). Effects of pH and microbial composition on odour in food waste composting. Waste Management, 33(1), 204-211.
Suthar, S. (2008). Bioconversion of postharvest crop residues and cattle shed manure into value-added products using earthworm Eudrilus eugeniae Kinberg. Ecol. Eng., 32(3), 206–214. http://doi.org/10.1016/j.ecoleng.2007.1 1.002
Tahir, T.A. & Hamid, F. S. (2012). Vermicomposting of two types of coconut wastes employing Eudrilus eugeniae: a comparative study. Journal of Recycling of Organic Waste in Agriculture, 1, 7 – 12. https://doi.org/10.1186/2251-7715-1-7
Tai, H.S. & He, W. H. (2007). A novel composting process for plant wastes in Taiwan military barracks. Resour. Conserv. Recy., 51, 408–417.
Tripetchkul, S., Pundee, K., Koonsrisuk, S. & Akeprathumchai, S. (2012). Co – composting of coir pith and cow manure: initial C/N ratio vs physico – chemical changes. International Journal of Recycling of Organic Waste in Agriculture, 1, 15 – 23. https://doi.org/10.1186/2251-7715-1-15
Tumuhairwe, J.B., Tenywa, J. S., Otabbong. E. & Ledin, S. (2009). Comparison of four low-technology composting methods for market crop waste. Waste Management, 29, 2274–2281. http://doi.org/10.1016/j.wasman.2009.03.015
Uma Maheswari, N. & Anusuya. N. (2012). Conversion of leaf litter into compost by Effective Microorganisms (EM), Bacillus subtilis, Aspergillus niger and their effect on growth parameters of vigna radiata Linn.
Van Fan, Y., Lee, C. T., Klemeš, J. J., Chua, L. S., Sarmidi, M. R. & Leow, C. W. (2018). Evaluation of Effective Microorganisms on home scale organic waste composting. Journal of Environmental Management, 216, 41-48.
Venkatramanan, V., Shah, S., Rai, A. K. & Prasad, R. (2021). Nexus between crop residue burning, bioeconomy and sustainable development goals over north-western India. Frontiers in Energy Research, 392.
Viel, M., Sayag, D. & Andre, L. (1987). Optimisation of agricultural, industrial waste management through in – vessel composting. In: Bertoldi M (Ed) Compost: Production, Quality and Use, Elsevier Applied Science, Essex: 230 – 237.
Vourinen, A.H. & Saharinen, M. H. (1997). Evolution of microbiological and chemical parameters during manure and straw cocomposting in a drum composting system. Agriculture, Ecosystem and Environment, 66,19–29.
Walkley, A. & Black, I.A. (1934). An examination for the outline of method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci., 37, 29.
Wang, Q., Wang, Z., Awasthi, M. K., Jiang, Y., Li, R., Ren, X. & Zhang, Z. (2016). Evaluation of medical stone amendment for the reduction of nitrogen loss and bioavailability of heavy metals during pig manure composting. Bioresource Technology, 220, 297-304.
Wu, L., Ma, L. Q. & Martinez, G. (2000). Comparison of methods for evaluating stability and maturity of biosolids compost. Journal of Environmental Quality, 29, 424 - 429. https://doi.org/10.2134/jeq2000.00472425002900020008x
Yadav, A. & Garg, V. K. (2011). Recycling of organic wastes by employing Eisenia fetida, Bioresource Technology, 102(3), 2874-2880. https://doi.org/10.1016/j.biortec h.2010.10.083
Yadav, J. & Gupta, R. K. (2017). Dynamics of nutrient profile during vermicomposting. Ecology, Environment and Conservation, 23(1), 445-450.
Zainudin, M. H. M., Zulkarnain, A., Azmi, A. S., Muniandy, S., Sakai, K., Shirai, Y. & Hassan, M. A. (2022). Enhancement of Agro-Industrial Waste Composting Process via the Microbial Inoculation: A Brief Review. Agronomy, 12(1), 198.
Zhong, Z., Bian, F. & Zhang, X. (2018). Testing composted bamboo residues with and without added effective microorganisms as a renewable alternative to peat in horticultural production. Industrial Crops and Products, 112, 602-607.
Zucconi, F., Pera, A. & Forte, M. (1981). Evaluating toxicity of immature compost. BioCycle, 2, 54-57.
Research Articles

How to Cite

A comparative study of effective microorganisms (EM) and biocompost in the decomposition of coconut waste material. (2022). Journal of Applied and Natural Science, 14(SI), 129-137. https://doi.org/10.31018/jans.v14iSI.3598