Article Main

Muthumani Jagadesh Duraisamy Selvi Subramanium Thiyageshwari Thangavel Kalaiselvi Keisar Lourdusamy Ramalingam Kumaraperumal

Abstract

Land uses are pivotal in global carbon cycles. The native forest lands possess a greater potential to sequester higher carbon, which can directly address soil quality and climate change problems. Unfortunately, the rapid conversion of forests to other land use over the past few decades has significantly declined the concentration of carbon in the soils.  Therefore, in order to estimate the impact of land-use change (LUC)  on soil carbon status, this present study was attempted under major ecosystems (Forest (FOR), cropland (CRP), tea plantation (TEA)) of Conoor. Results from findings revealed that total organic carbon (TOC) concentration and carbon pools were significantly  (p<0.05) higher in FOR than in CRP and TEA.  TOC (0-45 cm) recorded in FOR, CRP and TEA was 32.88, 11.87 and 18.84 g kg-1 and it decreased along the depth increment. Carbon stock (t ha-1) in FOR, CRP and TEA (0-45cm) was 68.10, 26.04, 42.42. Microbial biomass carbon (MBC) was higher in FOR (283.08 mg kg-1) followed by TEA (94.64 mg kg-1) and CRP (76.22 mg kg-1). The microbial biomass nitrogen (MBN) followed; FOR > TEA > CRP. These results clearly indicate that the LUC has inflicted a greater impact on soil carbon status and its extent was quantified using the land degradation index (LDI). The LDI (0-45 cm) recorded in CRP (-38.65) and TEA (-61.75) signals the need for immediate implementation of carbon management strategies in the CRP and TEA ecosystem to keep the soils of Conoor alive and prevent land degradation.

Article Details

Article Details

Keywords

Carbon pools, Carbon stocks, Carbon management index, Land-use change, Western ghats

References
Anderson, J.P.E. & K.H. Domsch. (1989). Ratios of microbial biomass carbon to total organic carbon in arable soils. Soil Biology and Biochemisty., 21, 471-479. https://doi.org/10.1016/0038-0717(89)90117-X
Arunachalam, K., Arunachalam, A. & Melkania, N.P .(1999). Influence of soil properties on microbial populations, activity and biomass in humid subtropical mountainous ecosystems of India. Biology and Fertility Soils., 30, 217–223. https://doi.org/10.1007/s003740050611
Barrow, C. J. (1991). Land degradation: development and breakdown of terrestrial environments. Cambridge University Press.
Bhattacharyya, T., Pal, D.K., Mandal, C. & Velayutham, M. (2000). Organic carbon stock in Indian soils and their geographical distribution. Current Science., 79, 655–660. https://www.jstor.org/stable/24105084
Cha-un, N., Chidthaisong, A., Yagi, K., Sudo, S. & Towprayoon, S. (2017). Greenhouse gas emissions, soil carbon sequestration and crop yields in a rain-fed rice field with crop rotation management. Agriculture Ecosystem and Environment., 237, 109-120. https://doi.org/10.1016/j.agee.2016.12.025
Chandrasekaran, S.S., Owaise, R.S., Ashwin, S., Jain, R.M., Prasanth, S. & Venugopalan R.B. (2013). Investigation on infrastructural damages by rainfall-induced landslides during November 2009 in Nilgiris, India. Natural Hazards., 65(3), 1535–1557. https://doi.org/10.1007/s11069-012-0432-x
Chaplot, V., Bouahom, B. & Valentin, C. (2010). Soil organic carbon stocks in Laos: spatial variations and controlling factors. Global Change Biology., 16 (4), 1380-1393. doi: 10.1111/j.1365-2486.2009.02013.x
Chen, C., Liu, W., Jiang, X. & Wu, J. (2017). Effects of rubber-based agroforestry systems on soil aggregation and associated soil organic carbon: implications for land use. Geoderma., 299:13–24. https://doi.org/10.1016/j.geoderma.2017.03.021
Chidozie, E. I., Ifeanyi, I. F., Johnbosco, O. M., Onyekachi, I. A., Anthony, C. C., Obinna, O. M. & Glory, M. O. (2019). Assessment of hydraulic conductivity and soil quality of similar lithology under contrasting landuse and land cover in humid tropical Nigeria. Soil & Environment., 38(1).
Diaz-Ravina, M., Carballas, T., and Acea, M. J. (1988). Microbial biomass and metabolic activity in four acid soils. Soil Biology and Biochemistry 20. 6, 817-823. https://doi.org/10.1016/0038-0717(88)90087-9
Dos Santos, U. J., De Medeiros, E. V., Duda, G. P., Marques, M. C., Souza, E. S. D., Brossard, M. & Hammecker, C. (2019). Land use changes the soil carbon stocks, microbial biomass and fatty acid methyl ester (FAME) in Brazilian semiarid area. Archives of Agronomy and Soil Science., 65(6), 755-769. https://doi.org/10.1080/03650340.2018.1523544
Fall, D., Diouf, D., Zoubeirou, A.M., Bakhoum, N., Faye, A. & Sall, S.N. (2012). Effect of distance and depth on microbial biomass and mineral nitrogen content under Acacia senegal (L.) Willd. trees. Journal of Environmental Management., 95, S260–S264. https://doi.org/10.1016/j.jenvman.2011.03.038
Food and Agriculture Organization (2019). Recarbonization of Global Soils - A dynamic response to offset global emissions. Retrieved from http://www.fao.org/3/i7235en/I7235EN.pdf.
Getachew, F., Abdulkadir, A., Lemenih, M. & Fetene, A. (2012). Effects of different land uses on soil physical and chemical properties in Wondo Genet area, Ethiopia. Science Journal., 5, 110–118.
Golchin, A., Oades, J., Skjemstad, J. & Clarke, P. (1995). Structural and dynamic properties of soil organic-matter as reflected by 13C natural-abundance, pyrolysis mass-spectrometry and solid-state 13C NMR-spectroscopy in density fractions of an oxisol under forest and pasture. Soil Research., 33(1), 59-76. https://doi.org/10.1071/SR9950059
Hanson, P.J., Edwards, N.T., Garten, C.T. & Andrews, J.A. (2000). Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry., 48 (1), 115–146. https://doi.org/10.1023/A:1006244819642
Hernández, T., Garcia, C., & Reinhardt, I. (1997). Short-term effect of wildfire on the chemical, biochemical and microbiological properties of Mediterranean pine forest soils. Biology and fertility of soils, 25(2), 109-116. https://doi.org/10.1007/s003740050289
Hsu, C.C., Tsai, H., Huang, W.-S. & Huang, S.T. (2021). Carbon Storage along with Soil Profile: An Example of Soil Chronosequence from the Fluvial Terraces on the Pakua Tableland, Taiwan." Land .,10 (5), 447.https://doi.org/10.3390/land10050447.
Intergovernmental Panel on Climate Change. (2007). Climate Change, The Physical Science Basis, 6(07),333.
Iqshanullah, M. (2019). Documentation of Soil Related Environmental Issues and It’s Contributing Factors: A Study among the Hilly Tribes of the Nilgiri District. Madras Agricultural Journal., 106(1-3), 1. DOI:10.29321/MAJ 2019.000260
Jackson, M. (1973). Soil chemical analysis, pentice hall of India Pvt. Ltd., New Delhi, India 498:151-154
Jacobson, M., Charlson, R.,J., Rodhe, H., & Orians, G. H. (2000). Earth system science: from biogeochemical cycles to global change. International Geophysics, Series 72. Academic Press
Jaiswal, P., Van Westen, C.J. & Jetten, V. (2011). Quantitative estimation of landslide risk from rapid debris slides on natural slopes in the Nilgiri hills, India. Natural Hazards and Earth System Sciences., 11(6), 1723–1743. https://doi.org/10.5194/nhess-11-1723-2011
Jenkinson, D.S. (1988). The determination of microbial biomass carbon and nitrogen in soil. In: Advances in Nitrogen Cycling in Agricultural Ecosystems, pp: 368-386. Wilson, J.R. (ed.). Commonwealth Agricultural Bureau International, Wallingford, UK.
Keeney, D.R. & Bremner, J.M. (1966). Comparison and evaluation of laboratory methods of obtaining an index of soil nitrogen availability. Agronomy Journal., 58,498-503. https://doi.org/10.2134/agronj1966.00021962005 800050013x
Kooch, Y., Tavakoli, M. & Akbarinia, M. (2019). Tree species could have substantial consequences on topsoil fauna: a feedback of land degradation/restoration. European Journal of Forest Research, 137(6), 793-805. https://doi.org/10.1007/s10342-018-1140-1
Krishnan, S. (2015). Landscape, labor, and label: the Second World War, pastoralist amelioration, and pastoral conservation in the Nilgiris, South India (1929–1945). International Labor and Working Class - History., 87, 92-110. https://doi.org/10.1017/S0147547915000046
Lal, R., Smith, P., Jungkunst, H.F., Mitsch, W.J., Lehmann, J., Nair, P.K.R., McBratney A.B., de Moraes Sá, J.C., Schneider, J., Zinn, Y.L., Skorupa, A.L.A., Zhang, H., Minasny. B., Srinivasrao, C. & Ravindranath, N. H. (2018). The carbon sequestration potential of terrestrial ecosystems. Journal of Soil and Water Conservation., 73 (6), 145A-152A. doi: 10.2489/jswc.73.6.145A
Lepcha, N. T. & Devi, N. B. (2020). Effect of land use, season, and soil depth on soil microbial biomass carbon of Eastern Himalayas. Ecological processes., 9(1), 1-14. https://doi.org/10.1186/s13717-020-00269-y
Lugato, E., Panagos, P., Bampa, F., Jones, A. & Montanarella, L. (2014). A new baseline of organic carbon stock in European agricultural soils using a modelling approach. Global Change Biology., 20 (1), 313-326. https://doi.org/10.1111/gcb.12292
Marble, S.C., Prior, S.A., Runion, G.B., Torbert, H.A., Gilliam, C.H., Fain, G.B. & Knight, P.R. (2016). Species and media effects on soil carbon dynamics in the landscape. Scientific Report.,  6(1), 1-9. https://doi.org/10.1038/srep25210
McCulley, R. L. & Burke, I.C. (2004). Microbial community composition across the Great Plains: Landscape versus regional variability. Soil Science Society of America Journal., 68, 106-115. https://doi.org/10.2136/sssaj2004.1060
McNeill, J.R. & Winiwarter. V. (2004). Breaking the sod: Humankind, history, and Soil. Science., 304(5677), 1627-1629. DOI: 10.1126/science.1099893
Mganga, K. Z. & Kuzyakov, Y. (2014). Glucose decomposition and its incorporation into soil microbial biomass depending on land use in Mt. Kilimanjaro ecosystems. European Journal of Soil Biology., 62, 74-82. https://doi.org/10.1016/j.ejsobi.2014.02.015
Murrieta, V.M.S., Govaerts, B. & L. Dendooven. (2007). Microbial biomass C measurements in soil of the central highlands of Mexico. Applied Soil Ecology., 35: 432-440. https://doi.org/10.1016/j.apsoil.2006.06.005
Nath, A.J., Brahma, B., Sileshi, G.W. & Das, A. K. (2018). Impact of land use changes on the storage of soil organic carbon in active and recalcitrant pools in a humid tropical region of India. Science of Total Environment., 624,908-917. https://doi.org/10.1016/j.scitotenv.2017.12.199
Padalia, K., Bargali, S.S., Bargali, K. & Khulbe, K. (2018). Microbial biomass carbon and nitrogen in relation to cropping systems in Central Himalaya, India. Current Science 115(9),1741–1749. https://www.jstor.org/stable/26978490
Paustian, K., Collins, H. P. & Paul, E. A. (2019). Management controls on soil carbon. In Soil organic matter in temperate agroecosystems.  15-49. CRC Press.
Priha, O. (1999). Microbial activities in soils under Scots pine, Norway spruce and Silver birch. Research Papers 731, Finnish Forest Research Institute, Helsinki.
Ramesh, T., Bolan, N.S., Kirkham, M.B., Wijesekara, H., Manjaiah, K.M., Srinivasarao, Ch., Sandeep, S., Rinklebe, J., Ok, Y.S., Choudhury, B.U., Want, H., Tang, C., Song, Z. & Freeman II, O.W. (2019). Soil organic carbon dynamics: Impact of land use changes and management practices: A review. Advances in Agronomy. 156, 1-125. https://doi.org/10.1016/bs.agron.2019.02.001
Regnier, P., Friedlingstein, P., Ciais, P., Mackenzie, F. T., Gruber, N., Janssens, I. A. & Thullner, M. (2013). Anthropogenic perturbation of the carbon fluxes from land to ocean. Nature geoscience., 6(8), 597-607. https://doi.org/10.1038/ngeo1830
Ross, C,W., Grunwald, S., Myers, D.B. & Xiong, X. (2016). Land use, land use change and soil carbon sequestration in the St. Johns River Basin, Florida, USA. Geoderma Regional., 7(1): 19-28. https://doi.org/10.1016/j.geodrs.2015.12.001
Sahoo, U.K., Singh, S.L., Gogoi, A,. Kenye, A. & Sahoo, S.S. (2019). Active and passive soil organic carbon pools as affected by different land use types in Mizoram, Northeast India. PLoS ONE., 14(7), e0219969. https://doi.org/10.1371/journal.pone.0219969
Sanderman, J., Hengl, T. & Fiske, G. J (2017). Soil carbon debt of 12,000 years of human land use. PNAS., 114(36), 9575-9580.https://doi.org/10.1073/pnas.1706103114
Saravanan, S., Jennifer, J.J., Singh, L., Thiyagarajan, S. & Sankaralingam, S. (2021). Impact of land-use change on soil erosion in the Coonoor Watershed, Nilgiris Mountain Range, Tamil Nadu, India. Arabian Jounal of Geosciences., 14(5), 1-15. doi: http://dx.doi.org/10.1007/s12517-021-06817-w
Scharlemann, J. P., Tanner, E. V., Hiederer, R. & Kapos, V. (2014). Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Management., 5(1), 81-91. https://doi.org/10.4155/cmt.13.77
Schimel, D.S., Braswell, B.H., Holland, E. A., McKeown, R., Ojima, D.S., Painter, T.T., Parton. W. J. & Townsend. A. R. (1994). Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils. Global Biogeochemical Cycles, 8, 279-293. https://doi.org/10.10 29/94GB00993
Sisti, C.P., dos Santos, H.P., Kohhann, R., Alves, B.J., Urquiaga, S. & Boddey, R.M. (2004). Change in carbon and nitrogen stocks in soil under 13 years of conventional or zero tillage in southern Brazil. Soil and Tillage Research.,76 (1), 39-58. https://doi.org/10.1016/j.still.2 003.08.007
Six, J., Paustian, K., Elliott, E.T. & Combrink, C. (2000). Soil structure and organic matter I. Distribution of aggregate‐size classes and aggregate‐associated carbon. Soil Science Society of America Journal., 64 (2), 681-689. https://doi.org/10.2136/sssaj2000.642681x
Soleimani, A., Hosseini, S.M., Bavani, A.R.M., Jafari, M. & Francaviglia, R. (2019). Influence of land use and land cover change on soil organic carbon and microbial activity in the forest of northern Iran. Catena., 177:227–237. https://doi.org/10.1016/j.catena.2019.02.018
Srinivasarao, Ch. (2020a). United Nations Framework Convention on Climate Change, Koronivia Joint Work on Agriculture.UNFCCC, Germany. doi:https://unfccc.int/sites/default/files/resource/5_India_Climate%20Change%20and%20Socio%20Economics%20%28UNFCCC%20Workshop%29-India.pdf
Stockmann, U., Adams, M.A., Crawford, J.W., Field, D.J., Henakaarchchi, N., Jenkins, M., Minasny, B., McBratney, A.B., Courcelles, V., Singh, K., Wheeler, I., Abbott, L., Angers, D.A., Baldock, J., Bird, M., Brookes, P.C., Chenu, C., Jastrow, J.D., Lal, R., Lehmann, M.J., O’Donnell, A.G., Parton, W.J., Whitehead, D. & Zimmermann, M. (2013). The known and unknowns of sequestration of soil organic carbon. Agriculture Ecosystem and Environment., 164, 80–99. https://doi.org/10.1016/j.agee.2012.10.001
Thirumalai, P, Anand, P. & Murugesan, J. (2015). Changing land use pattern in Nilgiris Hill environment using geospatial technology. International Journal of Recent Scientific Research., 6 (4), 3679-3683.
Trumbore, S. E. (1997). Potential responses of soil organic carbon to global environmental change. Proceedings of the National Academy of Sciences., 94(16), 8284-8291.https://doi.org/10.1073/pnas.94.16.8284
Van Leeuwen, J.P., Djukic, I., Bloem, J., Lehtinen, T. & Hemerik. L. (2017). Effects of land use on soil microbial biomass, activity and community structure at different soil depths in Danube floodplain. European Journal of Soil Biology., 79, 14–20. https://doi.org/10.1016/j.ejsobi.2017.02.001
Vance, E. D., Brookes, P. C. & Jenkinson, D. S. (1987). An extraction method for measuring soil microbial biomass C. Soil biology and Biochemistry, 19(6), 703-707.https://doi.org/10.1016/0038-0717(87)90052-6
Vanhala, P., Bergström, I., Haaspuro, T., Kortelainen, P., Holmberg, M. & Forsius, M. (2016). Boreal forests can have a remarkable role in reducing greenhouse gas emissions locally: Land use-related and anthropogenic greenhouse gas emissions and sinks at the municipal level. Science of Total Environment., 557, 51-57. https://doi.org/10.1016/j.scitotenv.2016.03.040
Walkley, A. & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science., 37 (1), 29-38.
Wang, Q. & Wang, S. (2011). Response of labile soil organic matter to changes in forest vegetation in subtropical regions. Applied Soil Ecology., 47(3), 210–216.
Wang, W., Sardans, J., Zeng, C., Zhong, C., Li, Y. & Peñuelas. J. (2014). Responses of soil nutrient concentrations and stoichiometry to different human land uses in a subtropical tidal wetland. Geoderma., 232, 459-470. https://doi.org/10.1016/j.apsoil.2010.12.004
Wei, X., Shao, M., Gale, W. J., Zhang, X. & Li, L. (2013). Dynamics of aggregate-associated organic carbon following conversion of forest to cropland. Soil Biology and Biochemistry., 57, 876–883. https://doi.org/10.1016/j.soilbio.2012.10.020
Wolters, V. (2000). Invertebrate control of soil organic matter stability. Biology and fertility of Soils., 31(1), 1-19.https://doi.org/10.1007/s003740050618
Section
Research Articles

How to Cite

Unravelling the carbon pools and carbon stocks under different land uses of Conoor region in Western Ghats of India . (2022). Journal of Applied and Natural Science, 14(3), 762-770. https://doi.org/10.31018/jans.v14i3.3596