VR. Mageshen https://orcid.org/0000-0001-6611-6223 P. Santhy S. Meena M. R. Latha A. Senthil T. Saraswathi P. Janaki


An iodine biofortification experiment was conducted by applying potassium iodate fertilizer in soil and foliar form and chitosan complex forms to investigate the growth, yield, quality and uptake of iodine in shivam hybrid of tomato in Palaviduthi soil series of Coimbatore region. Soil fertilization alone resulted in lower uptake of iodine in fruits because the iodine is susceptible to high volatilization and less phytoavailability and also resulted in less yield and poor quality of fruits. When the chitosan and potassium iodate were applied in combination through foliar form, the quality of the fruits was found to be superior (carotene-1.24 mg 100gm-1 ascorbic acid- 3.56 mg 100gm-1, titrable acidity-0.96%), with higher fruit yield (94.81 t ha-1) and uptake of iodine in fruits (0.99ppm). Potassium iodate alone, either in the form of soil or foliar application, increased the quality of fruits, but it did not prevent the loss of various pigments and acids during ripening and also the loss of iodine through volatilization. But chitosan conserved the losses by reducing the respiration rate and oxygen permeability. Further, chitosan formed an electrostatic interaction with potassium iodate, preventing volatilisation and gradually increasing the bioavailability of iodine from soil to fruits. Hence biofortifying iodine in the form of potassium iodate chitosan complex was preferred for enhancing yield, improving quality and increasing the iodine content in fruits.


Download data is not yet available.


Metrics Loading ...




Biofortification, Chitosan, Iodine, Potassium, Tomato

Abdelgawad, K.F., El-Mogy, M.M.; Mohamed, M.I.A., Garchery, C. & Stevens, R.G. (2019). Increasing Ascorbic Acid Content and Salinity Tolerance of Cherry Tomato Plants by Suppressed Expression of the Ascorbate Oxidase Gene. Agronomy .9, 51.
Ahammed, G.J., Chen, Y., Liu, C. & Yang, Y.(2022). Light regulation of potassium in plants. Plant Physiology and Biochemistry, 170, 316-324. Doi: https://doi.org/10.1016/j.plaphy.2021.12.019
Ali, G., Sharma, M., Salama, E.S., Ling, Z. & Li, X. (2022). Applications of chitin and chitosan as natural biopolymer: potential sources, pretreatments, and degradation pathways. Biomass Conversion and Biorefinery, 1-15.
Antonyak, H., Iskra, R. & Lysiuk, R. (2018). Iodine. In Trace Elements and Minerals in Health and Longevity,pp. Springer, Cham, 265-301. Doi: https://doi.org/10.1 007/978-3-030-03742-0_10
Arumugam, T., Sona, C.L. & Maheswari, M.U. (2021). Fruits and vegetables as Superfoods: Scope and demand. Journal of Pharma Innovovation, 10, 119-129.
Buturi, C.V., Mauro, R.P., Fogliano, V., Leonardi, C. & Giuffrida, F.(2021). Mineral biofortification of vegetables as a tool to improve human diet. Foods, 10(2),223. Doi:  https://doi.org/10.3390/foods10020223
Chakraborty, M., Hasanuzzaman, M., Rahman, M., Khan, M.A.R., Bhowmik, P., Mahmud, N.U., Tanveer, M. & Islam, T. (2020). Mechanism of plant growth promotion and disease suppression by chitosan biopolymer.  Agriculture, 10(12),624. Doi:https://doi.org/10.3390/agricultur e10120624
De Souza, J.M., Bonomo, R., dos Reis Silva, F.O., Zucoloto, M., de Lima Nascimento, A. & Campanharo, A. (2021). Production of banana tree ‘PacovanKen’fertigated under different doses of potassium and nitrogen. Comunicata Scientiae, 12, 3497-3497.
El-Serafy, R.S. (2020). Phenotypic plasticity, biomass allocation, and biochemical analysis of cordyline seedlings in response to oligo-chitosan foliar spray. Journal of Soil Science and Plant Nutrition, 20(3),1503-1514.
Galus, S., Mikus, M., Ciurzyńska, A., Domian, E., Kowalska, J., Marzec, A. & Kowalska, H. (2021). The effect of whey protein-based edible coatings incorporated with lemon and lemongrass essential oils on the quality attributes of fresh-cut pears during storage.Coatings, 11(7), 745. Doi: https://doi.org/10.3390/coatings11070745
Gayathiri, M., Madhavan, S. & Porchelvi, B. (2021). Effect of different organic media on growth parameters of tomato seedlings. Life sciences for sustainable development,33-36.
Grahl, S., Strack, M.,Mensching, A. & Mörlein, D. (2020). Alternative protein sources in Western diets: Food product development and consumer acceptance of spirulina-filled pasta. Food Quality and Preference, 84,933.
Hagenguth, J., Kanski, L., Kahle, H., Naumann, M., Pawelzik, E., Becker, H.C. & Horneburg, B. (2022). Breeders' Sensory Test: A new tool for early selection in breeding for tomato (Solanum lycopersicum) flavour. Plant Breeding, 141(1), 96-107. Doi: https://doi.org/10.1111/pbr.12994
Hasanuzzaman, M., Bhuyan, M.B., Nahar, K., Hossain, M.S., Mahmud, J.A., Hossen, M.S., Masud, A.A.C. and Fujita, M. (2018). Potassium: a vital regulator of plant responses and tolerance to abiotic stresses. Agronomy, 8(3),31. Doi: https://doi.org/10.3390/agronomy8030031
Houmani, H., Debez, A., Freitas-Silva, L.D., Abdelly, C., Palma, J.M. & Corpas, F.J (2022). Potassium (K+) starvation-induced oxidative stress triggers a general boost of antioxidant and NADPH-generating systems in the halophyte Cakile maritima. Antioxidants, 11(2), 401. Doi: https://doi.org/10.3390/antiox11020401
Jiang, Y., Yin, H., Wang, D., Zhong, Y. & Deng, Y. (2022). Combination of chitosan coating and heat shock treatments to maintain postharvest quality and alleviate cracking of Akebia trifoliata fruit during cold storage. Food Chemistry,133330. Doi: https://doi.org/10.1016/j.foodc hem.2022.133330
Kastori, R.R., Maksimović, I.V. & Putnik-Delić, M.I. (2021). Iodine and the higher plants. ZbornikMaticesrpske za prirodnenauke, (141), 119-137.Doi:https://doi.org/10.2298/ZMSPN2141119K
Lyons, G. (2018). Biofortification of cereals with foliar selenium and iodine could reduce hypothyroidism. Frontiers in Plant Science, 9, 730. Doi:https://doi.or g/1 0.3389/fpls.2018.00730
Mazon, S., Brunetto, C.A., Woyann, L.G., Finatto, T., Andrade, G.S. & Vargas, T.D.O. (2022). Agronomic performance and physicochemical quality of tomato fruits under organic production system. Revista Ceres, 69, 236-245. Doi: https://doi.org/10.1590/0034-737X202269020015  
Paes de Melo, B., Carpinetti, P.D.A., Fraga, O.T., Rodrigues-Silva, P.L., Fioresi, V.S., de Camargos, L.F. & Ferreira, M.F.D.S. (2022). Abiotic stresses in plants and their markers: a practice view of plant stress responses and programmed cell death mechanisms. Plants, 11(9), 1100.Doi: https://doi.org/10.3390/plants11091100
Safari, Z.S., Ding, P., Juju Nakasha, J. & Yusoff, S.F., (2020). Combining chitosan and vanillin to retain postharvest quality of tomato fruit during ambient temperature storage Coatings, 10(12),1222. Doi: https://doi.org/10.33 90/coatings10121222
Saleem, M.S., Anjum, M.A., Naz, S., Ali, S., Hussain, S., Azam, M., Sardar, H., Khaliq, G., Canan, İ. & Ejaz, S. (2021). Incorporation of ascorbic acid in chitosan-based edible coating improves postharvest quality and storability of strawberry fruits. International Journal of Biological Macromolecules, 189,160-169. Doi:https://doi.org/10.101 6/j.ijbiomac.2021.08.051
Shah, S. & Hashmi, M.S. (2020). Chitosan–aloe vera gel coating delays postharvest decay of mango fruit. Horticulture, Environment, and Biotechnology, 61(2), 279-289.
Shahrajabian, M.H., Chaski, C., Polyzos, N. & Petropoulos, S.A. (2021). Biostimulants application: A low input cropping management tool for sustainable farming of vegetables. Biomolecules, 11(5), 698. Doi: https://doi.org/10.3 390/biom11050698
Shehata, S.A., El-Mogy, M.M. & Mohamed, H.F.Y. (2019). Postharvest quality and nutrient contents of long sweet pepper enhanced by supplementary potassium foliar application. International Journal of Vegetable sciences, 25, 196–209. Doi: https://doi.org/10.1080/193152 60.2018.1 52 3816
Teklić, T., Parađiković, N., Špoljarević, M., Zeljković, S., Lončarić, Z. & Lisjak, M. (2021). Linking abiotic stress, plant metabolites, biostimulants and functional food. Annals of Applied Biology, 178(2), 169-191.
Tsaniklidis, G.; Charova, S.N.; Fanourakis, D.; Tsafouros, A.; Nikoloudakis, N.; Goumenaki, E.; Tsantili, E.; Roussos, P.A.;Spiliopoulos, I.K.; Paschalidis, K.A. (2021). The role of temperature in mediating postharvest polyamine homeostasis in tomatofruit. Postharvest Biological Technology.179, 111586. Doi: https://doi.org/10.1016/j.posthar vbio.2021.111586
Xu, X.Y., Sun, L., Li, S., Xu, H. & Lei, P.(2020). Welan gum promoted the growth of rice seedlings by enhancing carbon and nitrogen assimilation. Carbohydrate Research, 498, 108181.Doi: https://doi.org/10.1016/j.carr es.2020.108181
Zulfiqar, F., Casadesús, A., Brockman, H. & Munné-Bosch, S. (2020). An overview of plant-based natural biostimulants for sustainable horticulture with a particular focus on moringa leaf extracts. Plant Science, 295, 110194.Doi:https://doi.org/10.1016/j.plantsci.2019.110194
Citation Format
How to Cite
Mageshen, V., Santhy, P., Meena, S., Latha, M. R., Senthil, A., Saraswathi, T., & Janaki, P. (2022). Influence of potassium iodate and chitosan iodate complex on growth, yield, quality and iodine uptake in ‘shivam’ hybrid of tomato (Solanum lycopersicum L.). Journal of Applied and Natural Science, 14(3), 784–795. https://doi.org/10.31018/jans.v14i3.3583
More Citation Formats:
Research Articles

Most read articles by the same author(s)

1 2 > >>