Impact of carotenoids on gut microbiome: Implications in human health and disease
Article Main
Abstract
Carotenoids are the colored compounds that prominently occur in fruits, vegetables, flowers, algae, fungi, yeast, and marine organisms. The coloration of carotenoids is mainly due to varieties of conjugated double bonds, which act as a light-absorbing chromophores. β-Carotene, α-Carotene, Lycopene, Astaxanthin, Lutein, Zeaxanthin, β-Cryptoxanthin, α-Cryptoxanthin, γ-Carotene and Fucoxanthin are the common carotenoids of the human diet. This review aimed at providing scientific evidence supporting the benefits of nutritional carotenoid intake on gut microbiota modulation in different disease models. Carotenoids have some beneficial effects on human health, and it is due to the activity of pro-vitamin A and antioxidant function. Although mechanisms are under investigation, studies suggest that carotenoid intake may reduce the risk of cancer, cardiovascular disease, eye disease, haematological disease, immune stimulants, and improve cognitive function. Recent studies have shown that carotenoids can modulate gut microbiota composition associated with host health. The human gut harbors a complex community of over 100 trillion microbial cells, influencing human physiology, metabolism, nutrition, and immune function. The combination of extrinsic (lifestyle and medication) and intrinsic (host genetics, immune and metabolic regulations) factors shapes the gut microbiota. Diet is a crucial modifiable factor influencing gut microbiota composition, indicating the potential for therapeutic dietary strategies to manipulate microbial diversity, design, and stability.
Article Details
Article Details
Astaxanthin, β-carotene, Carotenoids, Fucoxanthin, Gut- microbiome, Gut dysbiosis, Human health, Lycopene
Backhed F., Ding H., Wang, T., Hooper, L. V., Gou, Y.K., Nagy A., Semenkovich C.F. & Gordon JI. (2004). The gut microbiota as an environmental factor that regulates fat storage. Proceedings of the National Academy of Sciences of the USA, 101(44),15718–15723. https://doi.org/10.1073/pnas.0407076101
Bakan E, Tugba Akbulut, Z., & Levent Inanc, A. (2014). Carotenoids in Foods and their Effects on Human Health. Academic Food Journal, 12(2) 61-68. http://www.acad emicfoodjournal.com
Bas-Bellver, C., Andres C., Segui L., Barrera C., Jimenez-Hernandez N., Artacho A., Betoret N., & Gosalbes MJ. (2020). Valorization of Persimmon and Blueberry Byproducts to Obtain Functional Powders: In Vitro Digestion and Fermentation by Gut Microbiota. Journal of Agricultural and Food Chemistry, 68(30):8080–8090. https://doi.org/10.1021/acs.jafc.0c02088
Beita Zhao., Hua Liu., Jiamin Wang., Pujie Liu., Xintong Tan., Bo Ren., Zhigang Liu., & Xuebo Liu. (2018). Lycopene Supplementation Attenuates Oxidative Stress, Neuroinflammation, and Cognitive Impairment in Aged CD-1 Mice. Journal of Agricultural and Food Chemistry. 66,12,3127–3136. https://doi.org/10.1021/acs.jafc.7b 05770
Belzer C., & De Vos WM. (2012). Microbes insidefrom diversity to function: The case of Akkermansia. International Society for Microbial Ecology J. 6(8):1449–1458. https://doi.org/10.1038/ismej.2012.6
Caesar R., Tremarol I.V., Kovatcheva-Datchary P., Cani P.D., & Backhed F. (2015). Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling. Cell Metabolism. 22(4):658–668. https://doi.org/10.1016/j.cmet.2015.07.026
Cai X., Han Y., Gu M., Song M., Wu X., Li Z., Li F., Goulette T., & Xiao H. (2019). Dietary cranberry suppressed colonic inflammation and alleviated gut microbiota dysbiosis in dextran sodium sulfate-treated mice. Food & Function. 10(10):6331–6341. https://doi.org/10.1039/c9fo01537j
Carrera-Quintanar L., Roa R.I.L., Quintero-Fabian, S., Sanchez-Sanchez M.A., Vizmanos B., & Ortuno-Sahagun D. (2018). Phytochemicals that influence gut microbiota as prophylactics and for the treatment ofobesity and inflammatory diseases. Mediators of Inflammation. https://doi.org/10.1155/2018/9734845
Carvalho, F.A., Koren O., Goodrich. J.K., Johansson M.E.V., Aitken J.D., Su Y., Chassaing B., Walters W. A., Gonzalez A., & Clemente J.C. et al., (2012). Transient Inability to Manage Proteobacteria Promotes Chronic Gut Inflammation in TLR5-Deficient Mice. Cell Host & Microbe. 12(2):139–152. https://doi.org/10.1016/j.chom.2012.07.004.Transient
Chen Y., Zhao S., Jiao D., Yao B., Yang S., Li P., & Long M. (2021). Astaxanthin Alleviates Ochratoxin A-Induced Cecum Injury and Inflammation in Mice by Regulating the Diversity of Cecal Microbiota and TLR4/MyD88/NF- κ B Signaling Pathway. Oxidative Medicine and Cellular Longevity. https://doi.org/10.1155/2021/8894491
Daniel S.G., Ball C.L., Besselsen D.G., Doetschman T., & Hurwitz B.L. (2017). Functional Changes in the Gut Microbiome Contribute to Transforming Growth Factor β-Deficient Colon Cancer. mSystems. 2(5). https://doi.org/10.1128/msystems.00065-17
Djuric Z, Bassis, C.M., Plegue, M.A., Ren J., Chan R., Sidahmed, E.K., Turgeon, D.K., Ruffin, M.T., Kato I., & Sen A. (2018). Colonic Mucosal Bacteria Are Associated with Inter-Individual Variability in Serum Carotenoid Concentrations. Journal of the Academy of Nutrition and Dietetics. 118(4):606-616.e3. https://doi.org/10.1016/j.jand.2 017.09.013
Echavarri-Erasun, C., & Johnson, E.A. 2002. Fungal carotenoids. Applied Mycology and Biotechnology. 2(C):45–85. https://doi.org/10.1016/S1874-5334(02)80006-5
Everard A., Belzer C., Geurts L., Ouwerkerk, J.P., Druart C, Bindels, L.B., Guiot Y., Derrien M., Muccioli, G.G., & Delzenne, N.M. et al. (2013). Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proceedings of the National Academy of Sciences of the USA, 110(22):9066–9071. https://doi.org/10.1073/pnas.1219451110
Feher M., Fauszt P., Tolnai E., Fidler G., Pesti-Asboth, G., Stagel A., Szucs I., Biro S., Remenyik J., Paholcsek M., & Stundl L. (2021). Effects of phytonutrient-supplemented diets on the intestinal microbiota of Cyprinus carpio. PLoS One. 16(4 April):1–24. https://doi.org/10.1371/journal.pone.0248537
Fiedor J., & Burda K. (2014). Potential role of carotenoids as antioxidants in human health and disease. Nutrients. 6(2):466–488. https://doi.org/10.3390/nu6020466
Galasso C., Corinaldesi C., & Sansone C. (2017). Carotenoids from marine organisms: Biological functions and industrial applications. Antioxidants. 6(4). https://doi.org/10.3390/antiox6040096
Grodstein F., Kang, J.H., Glynn, R.J., Cook, N.R., & Gaziano, J.M. (2007). A randomized trial of beta carotene supplementation and cognitive function in men: The physicians’ health study II. Archives of internal medicine. 167(20):2184–2190. https://doi.org/10.1001/archinte.167.2 0.2184
Guinane, C.M., & Cotter, P.D. (2013). Role of the gut microbiota in health and chronic gastrointestinal disease : understanding a hidden metabolic organ. Therapeutic Advances in Gastroenterology. 6(4): 295–308. https://doi.org/10.1177/1756283X13482996
Guo B., Yang B., Pang X., Chen T., Chen F., & Cheng, K.W. (2019). Fucoxanthin modulates cecal and fecal microbiota differently based on diet. Food Funct. 10(9):5644–5655. https://doi.org/10.1039/c9fo01018a
He C., Cheng D., Peng C., Li Y., Zhu Y., & Lu N. (2018). High-fat diet induces dysbiosis of gastric microbiota prior to gut microbiota in association with metabolic disorders in mice. Frontiers in Microbiology. 9(APR):1–9. https://doi.org/10.3389/fmicb.2018.00639
Higuera-Ciapara, I., Felix-Valenzuela, L., & Goycoolea, F.M. (2006). Astaxanthin: A review of its chemistry and applications. Critical Reviews in Food Science and Nutrition. 46(2):185–196. https://doi.org/10.1080/1040 86905 90957188
Jihui Wang., Shiwen Liu., Han Wang., Shan Xiao., Cheng Li., Ying Li., & Bingnan Liu (2019). Xanthophyllomyces dendrorhous-Derived Astaxanthin Regulates Lipid Metabolism and Gut Microbiota in Obese Mice Induced by A High-Fat Diet. Mar. Drugs, 17, 337; doi:10.3390/md17060337
Jyotika Dhankhar., Sumita S., Kadian., & Asha Sharma. (2012). ASTAXANTHIN: A POTENTIAL CAROTENOID. International Journal of Pharmaceutical Sciences and Research, Vol. 3(5): 1246-1259
Kim SK., & Pangestuti R. Biological activities and potential health benefits of fucoxanthin derived from marine brown algae. Adv Food Nutr Res. 2011;64:111-28. doi: 10.1016/B978-0-12-387669-0.00009-0. PMID: 22054942.
Kim, E.K., Kim, H., Vijayakumar A., Kwon O., & Chang N. (2017). Associations between fruit and vegetable, and antioxidant nutrient intake and age-related macular degeneration by smoking status in elderly Korean men. Nutrition Journal. 16(1):1–9. https://doi.org/10.1186/s12937-017-0301-2
Kristine Yaffe.(2007). Antioxidants and Prevention of Cognitive Decline: Does Duration of Use Matter?. Editorial. Arch intern med 167(20):2167–2168. https://doi.org/10.1002/14651858.CD002854.10.
Kishimoto Y., Tani M., Uto-Kondo, H., Iizuka M., Saita E., Sone H., Kurata H., & Kondo K. (2010). Astaxanthin suppresses scavenger receptor expression and matrix metalloproteinase activity in macrophages. European Journal of Nutrition. 49(2):119–126. https://doi.org/10.1007/s00394-009-0056-4
Li R., Li L., Hong P., Lang W., Hui J., Yang Y., & Zheng X. (2019). β-Carotene prevents weaning-induced intestinal inflammation by modulating gut microbiota in piglets. Asian-Australasian Journal of Animal Science. 00(00):1–14. https://doi.org/10.5713/ajas.19.0499
Lin S., Li Q., Jiang S., Xu Z., Jiang Y., Liu L., Jiang J., Tong Y., & Wang P. (2021). Crocetin ameliorates chronic restraint stress-induced depression-like behaviors in mice by regulating MEK/ERK pathways and gut microbiota. Journal of Ethnopharmacology. 268:113608. https://doi.org/10.1016/j.jep.2020.113608
Liu H., Liu M., Fu X., Zhang Z., Zhu L., Zheng X., & Liu J. (2018). Astaxanthin prevents alcoholic fatty liver disease by modulating mouse gut microbiota. Nutrients. 10(9). https://doi.org/10.3390/nu10091298
Liu T., Xiong Q., Li L., & Hu Y. (2019). Intestinal microbiota predicts lung cancer patients at risk of immune-related diarrhea. Immunotherapy. 11(5):385–396. https://doi.org/10.2217/imt-2018-0144
Liu Z., Sun Xiaowen., Sun Xun., Wang S., & Xu Y. (2019). Fucoxanthin Isolated from Undaria pinnatifida Can Interact with Escherichia coli and lactobacilli in the Intestine and Inhibit the Growth of Pathogenic Bacteria. Journal of Ocean University of China. 18(4):926–932. https://doi.org/10.1007/s11802-019-4019-y
Lopez-Siles, M., Duncan, S.H., Garcia-Gil, L.J., & Martinez-Medina M. (2017). Faecalibacterium prausnitzii: From microbiology to diagnostics and prognostics. International Society for Microbial Ecology. 11(4):841–852. https://doi.org/10.1038/ismej.2016.176
Lowe, P.P., Gyongyosi B., Satishchandran A., Iracheta-Vellve, A., Ambade A., Kodys K., Catalano D., Ward, D.V., & Szabo G. (2017). Alcohol-related changes in the intestinal icrobiome influence neutrophil infiltration, inflammation and steatosis in early alcoholic hepatitis in mice. PLoS One. 12(3):1–16. https://doi.org/10.1371/journal.pone.0174544
Loy A., Pfann C., Steinberger M., Hanson B., Herp S., Brugiroux S., Gomes C., Boekschoten. M.V., Schwab C., & Urich T, et al. (2017). schaedleri , Lifestyle and Horizontal Gene Transfer-Mediated Evolution of Mucispirillum schaedleri, a Core Member of the Murine Gut Microbiota. mSystems. 2(1):e00171-16
Maoka T.(2011). Carotenoids in marine animals. Marine Drugs. 9(2):278–293. https://doi.org/10.3390/md9020278
Mastrocola R., Ferrocino I., Liberto E., Chiazza F., Cento, A.S., Collotta D., Querio G., Nigro D., Bitonto V., & Cutrin, J.C. et al. (2018). Fructose liquid and solid formulations differently affect gut integrity, microbiota composition and related liver toxicity: a comparative in vivo study. Journal of Nutritional Biochemistry . 55:185–199. https://doi.org/10.1016/j.jnutbio.2018.02.003
Mezzomo N., & Ferreira, S.R.S. (2016). Carotenoids functionality, sources, and processing by supercritical technology: A review. Journal of Chemistry. 2016. https://doi.org/10.1155/2016/3164312
Mozos I., Stoian D., Caraba A., Malainer C., Horbanczuk, J.O., & Atanasov, A.G. (2018). Lycopene and vascular health. Frontires in Pharmacology. 9(MAY):1–16. https://doi.org/10.3389/fphar.2018.00521
Mulder. I,E., Schmidt B., Stokes, C.R,, Lewis M., Bailey M., Aminov, R.I., Prosser, J.I., Gill, B.P., Pluske, J.R., & Mayer, C.D. et al. (2009). Environmentally-acquired bacteria influence microbial diversity and natural innate immune responses at gut surfaces. BMC Biology. 7:1–20. https://doi.org/10.1186/1741-7007-7-79
Nadeau, B.A. & Conjeevaram H. (2017). Nonalcoholic Fatty Liver Disease and the Gut Microbiome. Clinics in Liver Disease. 10(5):116–119. https://doi.org/10.1002/cld.671
Neeraj K Surana., & Dennis L Kasper. (2012). The yin yang of bacterial polysaccharide: : lessons learned from B. fragilis PSA. Immunological Reviews 245(1):13-26. doi: 10.1111/j.1600-065X.2011.01075.x.
Neyrinck, A.M., Etxeberria U., Taminiau B., Daube G., Van Hul M., Everard A., Cani, P.D., Bindels, L.B., & Delzenne, N.M. (2017). Rhubarb extract prevents hepatic inflammation induced by acute alcohol intake, an effect related to the modulation of the gut microbiota. Molecular Nutrition & Food Research. 61(1):1–12. https://doi.org/10.1002/mnfr.201500899
Olatunde A., Tijjani H., Ishola, A.A., Egbuna C., Hassan S., & Akram M. (2020). Carotenoids as Functional Bioactive Compounds. Functional Foods and Nutraceuticals. https://doi.org/10.1007/978-3-030-42319-3_20
Pittayanon R., Lau, J.T., Leontiadis, G.I., Tse F., Yuan Y., Surette M., & Moayyedi P. (2020). Differences in Gut Microbiota in Patients With vs Without Inflammatory Bowel Diseases: A Systematic Review. Gastroenterology. 158(4):930-946.e1. https://doi.org/10.1053/j.gastro.2019.11.294
Power, K.A., Lu, J.T., Monk, J.M., Lepp D., Wu W., Zhang C., Liu R., Tsao R., Robinson, L.E., Wood, G.A., & Wolyn, D.J. (2016). Purified rutin and rutin-rich asparagus attenuates disease severity and tissue damage following dextran sodium sulfate-induced colitis. Molecular Nutrition & Food Research. 60(11):2396–2412. https://doi.org/10.1002/mnfr.201500890
Rao, A.V., Waseem Z., & Agarwal S. (1998). Lycopene content of tomatoes and tomato products and their contribution to dietary lycopene. Food Research International. 31(10):737–741. https://doi.org/10.1016/S0963-9969(99)00053-8
Reboul E. (2013). Absorption of vitamin A and carotenoids by the enterocyte: Focus on transport proteins. Nutrients. 5(9):3563–3581. https://doi.org/10.3390/nu5093563
Richards DJ., Li Y., Kerr CM., Yao J., Beeson GC., Coyle RC., Chen X., Jia J., Damon B., Wilson R., & Starr Hazard E.. Human cardiac organoids for the modelling of myocardial infarction and drug cardiotoxicity. Nature Biomedical Engineering. 2020 Apr;4(4):446-62.
Rinninella E., Raoul P., Cintoni M., Franceschi F., Abele G., Miggiano D., Gasbarrini A., & Mele MC. (2019). What is the Healthy Gut Microbiota Composition ? A Changing Ecosystem across Age , Environment,Diet,and Diseases.Microorganisms.Jan;7(1):14.https://doi.org/10.3390/microorganisms7010014
Saini, R.K., Prasad P., Lokesh V., Shang X., Shin J., Keum, Y.S., & Lee, J.H. (2022). Carotenoids: Dietary Sources, Extraction, Encapsulation, Bioavailability, and Health Benefits—A Review of Recent Advancements. Antioxidants. 11(4). https://doi.org/10.3390/antiox1 1040795
Santoru, M.L., Piras C., Murgia A., Palmas V., Camboni T., Liggi S., Ibba I., Lai, M.A., Orru S., & Blois S, et al. (2017). Cross sectional evaluation of the gut-microbiome metabolome axis in an Italian cohort of IBD patients. Scientific Reports. 7(1):1–14. https://doi.org/10.1038/s41598-017-10034-5
Seishima J., Iida N., Kitamura K., Yutani M., Wang Z., Seki A., Yamashita Taro., Sakai Y., Honda M., & Yamashita Tatsuya et al. (2019). Gut-derived Enterococcus faecium from ulcerative colitis patients promotes colitis in a genetically susceptible mouse host. Genome Biology. 20(1):1–18. https://doi.org/10.1186/s13059-019-1879-9
Se-Kwon, Kim., & Ratih Pangestuti (2011). Biological Activities and Potential Health Benefits of Fucoxanthin Derived from Marine Brown Algae . Advances in Food and Nutrition Research. Volume 64, Pages 111-128. https://doi.org/10.1016/B978-0-12-387669-0.00009-0
Shimidzu N., Goto M., & Miki W. (1996). Carotenoids as Singlet Oxygen Quenchers in Marine Organisms. Fisheries Sciences. 62(1):134–137. https://doi.org/10.2331/fishsci.62.134
Shin, N.R., Whon, T.W., & Bae, J.W. (2015). Proteobacteria: Microbial signature of dysbiosis in gut microbiota. Trends in Biotechnology. 33(9):496–503. https://doi.org/10.1016/j.tibtech.2015.06.011
Sokol H., Leducq V., Aschard H., Pham, H.P., Jegou S., Landman C., Cohen D., Liguori G., Bourrier A., & Nion-Larmurier I, et al. (2017). Fungal microbiota dysbiosis in IBD. Gut. 66(6):1039–1048. https://doi.org/10.1136/gutjnl-2015-310746
Stahl W., & Sies H. (2012). β-Carotene and other carotenoids in protection from sunlight. The American Journal of Clinical Nutrition. 96(5):1179–1184. https://doi.org/10.3945/ajcn.112.034819
Story E.N., Kopec, R.E., Schwartz, S.J., & Keith Harris G. (2010). An update on the health effects of tomato lycopene. Annual Review of Food Science and Technology. 1(1):189–210. https://doi.org/10.1146/annurev.fo od.102308.124120
Sun Xiaowen., Zhao H., Liu Z., Sun Xun., Zhang D., Wang S., Xu Y., Zhang G., & Wang D. (2020). Modulation of Gut Microbiota by Fucoxanthin during Alleviation of Obesity in High-Fat Diet-Fed Mice. Journal of Agricultural and Food Chemistry. 68(18):5118–5128. https://doi.org/10.1021/acs.jafc.0c01467
Takaichi S. (2011). Carotenoids in algae: Distributions, biosyntheses and functions. Marine Drugs. 9(6):1101–1118. https://doi.org/10.3390/md9061101
Tanca A., Palomba A., Fraumene C., Manghina V., Silverman M., & Uzzau S. (2018). Clostridial Butyrate Biosynthesis Enzymes Are Significantly Depleted in the Gut Microbiota of Nonobese Diabetic Mice. mSphere. 3(5):1–5. https://doi.org/10.1128/msphere.00492-18
Terasaki., Masaru., Osamu Uehara., Shinya Ogasa., Taishi Sano., & Atsuhito Kubota et al., (2021). Carcinogenesis, Volume 42, Issue 2, Pages 210–219, https://doi.org/10.1093/carcin/bgaa100
Walter J. (2008). Ecological role of lactobacilli in the gastrointestinal tract: Implications for fundamental and biomedical research. Applied and Environmental Microbiology. 74(16):4985–4996. https://doi.org/10.1128/AEM.00 753-08
Wang J., Liu S., Wang H., Xiao S., Li C., Li Y., & Liu B. Xanthophyllomyces dendrorhous-Derived Astaxanthin Regulates Lipid Metabolism and Gut Microbiota in Obese Mice Induced by A High-Fat Diet. Mar Drugs. 2019 Jun 5;17(6):337. doi: 10.3390/md17060337. PMID: 31195737; PMCID: PMC6627754.
Wiese M., Bashmakov Y., Chalyk N., Nielsen, D.S., Krych L., Kot W., Klochkov V., Pristensky D., Bandaletova T., & Chernyshova M, et al. (2019). Prebiotic Effect of Lycopene and Dark Chocolate on Gut Microbiome with Systemic Changes in Liver Metabolism, Skeletal Muscles and Skin in Moderately Obese Persons. BioMed Research International. 2019. https://doi.org/10.1155/2019/4625279
Wigg, A.J., Roberts-Thomson, I.C., Grose, R.H., Cummins, A.G., Dymock, R.B., & McCarthy, P.J. (2001). The role of small intestinal bacterial overgrowth, intestinal permeability, endotoxaemia, and tumour necrosis factor α in the pathogenesis of non-alcoholic steatohepatitis. Gut. 48(2):206–211. https://doi.org/10.1136/gut.48.2.206
Wu L., Lyu Y., Srinivasagan R., Wu J., Ojo B., Tang M., El-Rassi, G.D., Metzinger K., Smith, B.J., & Lucas, E.A, et al. (2020). Astaxanthin-Shifted gut microbiota is associated with inflammation and metabolic homeostasis in mice. Journal of Nutrition. 150(10):2687–2698. https://doi.org/10.1093/jn/nxaa222
Xia H., Liu C., Li, C.C., Fu M., Takahashi S., Hu, K.Q., Aizawa K., Hiroyuki S., Wu G., Zhao L., & Wang XD. (2018). Dietary tomato powder inhibits high-fat diet-promoted hepatocellular carcinoma with alteration of gut microbiota in mice lacking carotenoid cleavage enzymes. Cancer Prevention Research. 11(12):797–810. https://doi.org/10.1158/1940-6207.CAPR-18-0188
Xu, Y.H., Gao, C.L., Guo, H.L., Zhang, W.Q., Huang W., Tang, S.S., Gan, W.J., Xu Y., Zhou H., & Zhu Q. (2018). Sodium butyrate supplementation ameliorates diabetic inflammation in db/db mice. Journal of Endocrinology. 238(3):231–244. https://doi.org/10.1530/JOE-18-0137
Yan, A.W., Fouts, D.E., Brandl J., Starkel P., Torralba M., Schott E., Tsukamoto H., Nelson, K.E., & Brenner DA. (2012). NIH Public Access. 53(1):96–105. https://doi.org/10.1002/hep.24018.Enteric
Yonekura L & Nagao A. (2007). Intestinal absorption of dietary carotenoids. Molecular Nutrition & Food Research. 51(1):107–115. https://doi.org/10.1002/mnfr.200600145
Yuan, J.P., Peng J., Yin K., & Wang, J.H. (2011). Potential health-promoting effects of astaxanthin: A high-value carotenoid mostly from microalgae. Molecular Nutrition & Food Research.55(1):150–165. https://doi.org/10.1002/mnfr.201000414
Zhang H., Tang Y., Zhang Y., Zhang S., Qu J., Wang X., Kong R., Han C., & Liu Z. (2015). Fucoxanthin: A Promising Medicinal and Nutritional Ingredient. Evidence-Based Complementary and Alternative Medicine. https://doi.org/10.1155/2015/723515
Zhang L., Cao W., Gao Y., Yang R., Zhang X., Xu J., & Tang Q. (2020). Astaxanthin (ATX) enhances the intestinal mucosal functions in immunodeficient mice. Food & Function. 11(4):3371–3381. https://doi.org/10.1039/c9fo02555c
Zhao B., Wu J., Li J., Bai Y., Luo Y., Ji B., Xia B., Liu Z., Tan X., Lv J., & Liu X. (2019). Lycopene Alleviates DSS-Induced Colitis and Behavioral Disorders via Mediating Microbes-Gut-Brain Axis Balance. Journal of Agricultural and Food Chemistry. 68(13):3963–3975. https://doi.org/10.1021/acs.jafc.0c00196
Zhu L., Song Y., Liu H., Wu M., Gong H., Lan H., & Zheng X. (2021). Gut microbiota regulation and anti-inflammatory effect of β-carotene in dextran sulfate sodium-stimulated ulcerative colitis in rats. Journal of Food Science. 86(5):2118–2130. https://doi.org/10.1111/1750-3841.15684
Zia-ul-haq M. (2021). Carotenoids: Structure and Function in the Human Body. Springer publication. https://doi.org/10.1007/978-3-030-46459-2
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)