Usha S. S. Murugan K. Remya Krishnan


Breast cancer is the second most deadly diagnosed lifestyle disease among women. Surgery and chemotherapy are the current treatments of choice; nevertheless, toxicity connected with this underscores the urgency of the demand for the human-friendly drug. 50% of current synthetic drugs available commercially today are either direct or indirect descendants extracted from herbs. Anthocyanins possess many pharmacological activities, including anticancer potential. However, no study on anticancer activity of anthocyanins from Cordyline australis has been reported. Anthocyanins were extracted from fresh leaves using ethanol as solvent. The total anthocyanin was quantified and fractionated by Ultra Performance Liquid Chromatography. Cytotoxicitic effect was carried on diverse cancer cell lines like MCF 7, HCT-116, Caco-2 and SW480 using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assay. Based on MTT data, MCF 7 cells were further analyzed by LDH assay, Glutathione-S- transferase (GST), Quercetin reductase, Cytochrome P450 and Caspase 3, 8 and 9 activities. The obtained results were analyzed using ANOVA with a level of significance. Results obtained from MTT assay revealed that the anthocyanin extract carried significant toxic (p < 0.05) specificity against MCF 7 cells (65 ± 2.1 toxicity at 50 µg/ml) when compared to the other onco cells. Remarkable LDH leakage (50.2% vs 50 µg/ml), GST (3.0±0.002 U/mg protein), QR (4.4±0.054 U/mg protein), Cyt P450 activities (0.291±0.01 U/mg protein) were noticed. Caspase 3 (157%), 8 (142%) and 9 (147%) displayed profound activities. These in vitro findings of specific anticancer effects noticed on C. australis anthocyanin extract require further evaluation using animal models. Finally, the obtained findings open up the possibility of developing a lead antimetastatic anthocyanin candidate against deadly breast cancer.




Antimetastatic, Anthocyanin, Caspase, Cytochrome P450, Glutathione-S- transferase (GST),, Lactic dehydrogenase, Quercetin reductase

Adigun, R., Basit, H. & Murray J. (2021).Cell Liquefactive Necrosis. In: Stat Pearls [Internet]. Treasure Island (FL): Stat Pearls Publishing; 2022 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK430935/
Anantharaju, P.G., Gowda, P.C. & Vimalambike, M.G. et al. (2016). An overview on the role of dietary phenolics for the treatment of cancers. Nutrition Journal, 15(99). https://doi.org/10.1186/s12937-016-0217-2
Brentnall, M., Rodriguez-Menocal, L., De Guevara, R. L., Cepero, E. & Boise, L. H. (2013). Caspase-9, caspase-3 and caspase-7 have distinct roles during intrinsic apoptosis. BMC Cell Biology, 14(1), 1-9.
Choudhari Amit, S., Mandave Pallavi, C., Deshpande Manasi, Ranjekar Prabhakar & Prakash Om. (2020). Phytochemicals in Cancer Treatment: From Preclinical Studies to Clinical Practice. Frontiers in Pharmacology, 10, DOI=10.3389/fphar.2019.01614
Cosarca, S. L., Moaca, E. A., Tanase, C., Muntean, D. L., Pavel, I. Z. & Dehelean, C. A. (2019). Spruce and beech bark aqueous extracts: Source of polyphenols, tannins and antioxidants correlated to in vitro antitumor potential on two different cell lines. Wood Science and Technology, 53(2), 313-333.
Deng, Y., Zhao, Y., Padilla-Zakour, O. & Yang, G. (2015). Polyphenols, antioxidant and antimicrobial activities of leaf and bark extracts of Solidago canadensis L. Industrial crops and products, 74, 803-809.
Diaconeasa, Z. M., Frond, A. D., Ştirbu, I., Rugina, D. & Socaciu, C. (2018). Anthocyanins-smart molecules for cancer prevention. Phytochemicals-Source of Antioxidants and Role in Disease Prevention.
Ediriweera, M. K., Tennekoon, K. H., Samarakoon, S. R., Thabrew, I. & Dilip De Silva, E. (2016). A study of the potential anticancer activity of Mangifera zeylanica bark: Evaluation of cytotoxic and apoptotic effects of the hexane extract and bioassay-guided fractionation to identify phytochemical constituents. Oncology letters, 11(2), 1335-1344.
Elansary, H. O., Szopa, A., Kubica, P., O El-Ansary, D., Ekiert, H. & A Al-Mana, F. (2020). Malus baccata var. gracilis and Malus toringoides bark polyphenol studies and antioxidant, antimicrobial and anticancer activities. Processes, 8(3), 283.
Erikade Arruda Nascimentoa, Leandrode Lima Coutinhob, Cleber José da Silvaa, Vera Lúcia Arroxelas Galvão de Limac & Jacianados Santos Aguiara. (2022). In vitro anticancer properties of anthocyanins: A systematic review. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 1877(4), doi.org/10.1016/j.bbcan.2022.188748
Forkasiewicz, A., Dorociak, M., & Stach, K. et al. (2020). The usefulness of lactate dehydrogenase measurements in current oncological practice. Cell and Molecular Biology Letters, 25(35). https://doi.org/10.1186/s11658-020-00228-7
Greeshma, G. M., Manoj, G. S. & Murugan, K. (2020). Bioactivity and apoptotic efficacy of the purified terpenoid extract from the moss Brachythecium buchananii (Hook.) A. Jaeger against Mg 63 cells. International Journal of Pharmaceutical Sciences and Drug Research, 12(3): 287-294
Habdous, M., Vincent-Viry, M., Visvikis, S. & Siest, G. (2002). Rapid spectrophotometric method for serum glutathione S-transferases activity. Clinica Chimica Acta, 326(1-2), 131-142.
Han, C., Ding, H., Casto, B., Stoner, G. D. & D'Ambrosio, S. M. (2005). Inhibition of the growth of premalignant and malignant human oral cell lines by extracts and components of black raspberries. Nutrition and cancer, 51(2), 207-217.
Helm, K., Beyreis, M., Mayr, C., Ritter, M., Jakab, M., Kiesslich, T., & Plaetzer, K. (2017). In vitro cell death discrimination and screening method by simple and cost-effective viability analysis. Cellular Physiology and Biochemistry, 41:1011–1019, doi.org/10.1159/000460910
Kaja, S., Payne, A. J., Naumchuk, Y. & Koulen, P. (2017). Quantification of lactate dehydrogenase for cell viability testing using cell lines and primary cultured astrocytes. Current protocols in toxicology, 72(1), 2-26.
Krishnan, R. & Murugan, K. (2013). In vitro anticancer properties of flavonoids extracted from cell suspension culture of Marchantia linearis Lehm & Lindenb.(Bryophyta) against SW 480 colon cancer cell lines. Indo American Journal of Pharmaceutical Research, 3(12), 1427-1437.
Lee, S. J., Hong, S., Yoo, S. H.& Kim, G. W. (2013). Cyanidin-3-O-sambubioside from Acanthopanax sessiliflorus fruit inhibits metastasis by down regulating MMP-9 in breast cancer cells MDA-MB-231. Planta medica, 79(17), 1636-1640.
Li, L., Adams, L. S., Chen, S., Killian, C., Ahmed, A. & Seeram, N. P. (2009). Eugenia jambolana Lam. berry extract inhibits growth and induces apoptosis of human breast cancer but not non-tumorigenic breast cells. Journal of Agricultural and Food Chemistry, 57(3), 826-831.
Liu, J., Zhou, H., Song, L., Yang, Z., Qiu, M., Wang, J. & Shi, S. (2021). Anthocyanins: promising natural products with diverse pharmacological activities. Molecules, 26(13), 3807.
Liu, P. F., Hu, Y. C., Kang, B. H., Tseng, Y. K., Wu, P. C., Liang, C. C., Hou YY, Fu TY, Liou HH, Hsieh IC , Ger LP& Shu, C. W. (2017). Expression levels of cleaved caspase-3 and caspase-3 in tumorigenesis and prognosis of oral tongue squamous cell carcinoma. PLoS One, 12(7), e0180620.
Lowry, O. H. (1951). Protein measurements with the Folin phenol reagent. J. biol. Chem., 193, 265-275.
Manoj, G. S., Kumar, T. R., Varghese, S. & Murugan, K. (2012). Effect of methanolic and water extract of Leucobryum bowringii Mitt. on growth, migration and invasion of MCF 7 human breast cancer cells in vitro.
Manson, M. M., Ball, H. W., Barrett, M. C., Clark, H. L., Judah, D. J., Williamson, G. & Neal, G. E. (1997). Mechanism of action of dietary chemoprotective agents in rat liver: induction of phase I and II drug metabolizing enzymes and aflatoxin B1 metabolism. Carcinogenesis, 18(9), 1729-1738.
Mazzoni, L., Giampieri, F., Suarez, J. M. A., Gasparrini, M., Mezzetti, B., Hernandez, T. Y. F. & Battino, M. A. (2019). Isolation of strawberry anthocyanin-rich fractions and their mechanisms of action against murine breast cancer cell lines. Food & Function, 10(11), 7103-7120.
McIlwain, D. R., Berger, T. & Mak, T. W. (2013). Caspase functions in cell death and disease. Cold Spring Harbor Perspectives in Biology, 5(4).Doi: 10.1101/cshperspect.a008656
Patil, M. P. & Kim, G. D. (2017). Eco-friendly approach for nanoparticles synthesis and mechanism behind antibacterial activity of silver and anticancer activity of gold nanoparticles. Applied microbiology and biotechnology, 101(1), 79-92.
Prochaska, H. J. & Santamaria, A. B. (1988). Direct measurement of NAD (P) H: quinone reductase from cells cultured in microtiter wells: a screening assay for anticarcinogenic enzyme inducers. Analytical biochemistry, 169(2), 328-336.
Pu, X., Storr, S. J., Zhang, Y., Rakha, E. A., Green, A. R., Ellis, I. O. & Martin, S. G. (2017). Caspase-3 and caspase-8 expression in breast cancer: caspase-3 is associated with survival. Apoptosis, 22: 357–368.
Seelinger, G., Merfort, I., Wölfle, U. & Schempp, C. M. (2008). Anti-carcinogenic effects of the flavonoid luteolin. Molecules, 13(10), 2628-2651.
Sharma, N., Tiwari, V., Vats, S., Kumari, A., Chunduri, V., Kaur, S., Kapoor P. & Garg, M. (2020). Evaluation of anthocyanin content, antioxidant potential and antimicrobial activity of black, purple and blue colored wheat flour and wheat-grass juice against common human pathogens. Molecules, 25(24), 5785.
Tan, J., Li, Q., Xue, H. & Tang, J. (2020). Ultrasound‐assisted enzymatic extraction of anthocyanins from grape skins: Optimization, identification, and antitumor activity. Journal of Food Science, 85(11), 3731-3744.
Wang, L. S. & Stoner, G. D. (2008). Anthocyanins and their role in cancer prevention. Cancer Letters, 269(2), 281-290.
Young, J.C.& Abdel Aal, E.M. (2010). Anthocyanidins. In analysis of bioactive components in small grain cereals, Shewry, P R,Ward J L, Eds. AACC International Press: St. Paul M N, USA pp 141–165.
Zhou, J., Zhu, Y. F., Chen, X. Y., Han, B., Li, F., Chen, J. Y., Peng, X.L., Luo, L.P., Chen, W. & Yu, X. P. (2017). Black rice-derived anthocyanins inhibit HER-2-positive breast cancer epithelial-mesenchymal transition-mediated metastasis in vitro by suppressing FAK signaling. International Journal of Molecular Medicine, 40(6), 1649-1656.
Zorita Diaconeasa, Ioana Alexandra Stirbu, Jianbo Xiao, Nicolae Leopold, Zayde AYVAZ, Corina Danciu, Huseyin Ayvaz, Andreea Stanila, Madalina Nistor, Carmen Socaciu. (2020).Anthocyanins, Vibrant Color Pigments, and Their Role in Skin Cancer Prevention. Biomedicines, 8(9). DOI:10.3390/biomedicines8090336
Citation Format
How to Cite
Antimetastatic potential of anthocyanins from Cordyline australis (G. Forst.) Endl. Red star variety on MCF onco cell lines. (2022). Journal of Applied and Natural Science, 14(3), 777-783. https://doi.org/10.31018/jans.v14i3.3580
More Citation Formats:
Research Articles

How to Cite

Antimetastatic potential of anthocyanins from Cordyline australis (G. Forst.) Endl. Red star variety on MCF onco cell lines. (2022). Journal of Applied and Natural Science, 14(3), 777-783. https://doi.org/10.31018/jans.v14i3.3580