##plugins.themes.bootstrap3.article.main##

Farah Tareq Al-Alaq Suhad Saad Mahmood Noor S.K. AL-Khafaji Hussein O.M. Al-Dahmoshi Mojtaba Memariani

Abstract

Pseudomonas aeruginosa (P. aeruginosa) places among major opportunistic nosocomial pathogen which has developed extensive drug resistance. Due to uncontrolled consumption of antibiotics, multidrug-resistant (MDR) P. aeruginosa species are increasingly isolated from various settings of hospitals globally. This research aimed to determine the genes reproducing blaOXA-48, blaIMP-1, blaVIM-1 and blaNDM-1 metallo beta lactamase (MBL) genes from MDR P. aeruginosa isolates. Herein, the isolates of 200 P. aeruginosa have been obtained from microbiology laboratory of burn ward. The antibiotic susceptibility profile was using Disc Diffusion Method (DDM and in compliance with CLSI (Clinical and Laboratory Standards Institute) advice. Study of MBL-bearing strains and the existence of encoding genes was specified by means of polymerase chain reaction. In addition, pulsed field gel electrophoresis (PFGE) is performed for typing. In this study, 124 (62%) were extended spectrum β-lactamase producer and 51 (25.5%) were MBL producers. Moreover, 148 (74%) isolates were MDR-P. aeruginosa. Additionally, 42 (21%), 21 (10%), 10 (5%) and 2 (1%) isolates carried the blaIMP-1, blaOXA-48, blaVIM-1 and blaNDM-1 genes, respectively. The PFGE showed no genetic relationships among isolates. The study observed high rate of MDR P. aeruginosa in hospital settings, though not being outbreak, which nearly half of them carried carbapenemase enzymes. Therefore, the proper control of related infections and appropriate prescription and consumption of antibiotics is essential.

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Antibiotic resistance, Carbapenemase, Metallo-beta-lactamase, P. aeruginosa

References
Aghamiri, S., Amirmozafari, N., Fallah Mehrabadi, J., Fouladtan, B. & Samadi Kafil, H. (2014). Antibiotic resistance pattern and evaluation of metallo-beta lactamase genes including bla-IMP and bla-VIM types in Pseudomonas aeruginosa isolated from patients in Tehran hospitals. International Scholarly Research Notices, 2014,1-6.
Aksoy, M.D. & Tuğrul, H.M. (2020). Investigation of metallo-beta-lactamases in carbapenem resistant Pseudomonas aeruginosa strains by phenotypic and genotypic methods. Flora Infeksiyon Hastalıkları ve Klinik Mikrobiyoloji Dergisi, 25(3),301-307.
Al Dawodeyah, H.Y., Obeidat, N., Abu-Qatouseh, L.F. & Shehabi, A.A. (2018). Antimicrobial resistance and putative virulence genes of Pseudomonas aeruginosa isolates from patients with respiratory tract infection. Germs, 8(1), 31-40
Al-Agamy, M.H., Jeannot, K., El-Mahdy, T.S., Samaha, H.A., Shibl, A.M., Plésiat, P. & Courvalin, P. (2016). Diversity of molecular mechanisms conferring carbapenem resistance to Pseudomonas aeruginosa isolates from Saudi Arabia. Canadian Journal of Infectious Diseases and Medical Microbiology, 2016, 1-8.
Alkhudhairy, M.K. and Al-Shammari, M.M.M., 2020. Prevalence of metallo-β-lactamase–producing Pseudomonas aeruginosa isolated from diabetic foot infections in Iraq. New microbes and new infections, 35,1-6.
Azimi, A., Peymani, A. & Pour, P.K. (2018). Phenotypic and molecular detection of metallo-β-lactamase-producing Pseudomonas aeruginosa isolates from patients with burns in Tehran, Iran. Revista da Sociedade Brasileira de Medicina Tropical, 51, 610-615.
Barry, A., Panmanee, W., Hassett, D.J. & Satish, L. (2021). AB569, a Novel, Topical Bactericidal Gel Formulation, Kills Pseudomonas aeruginosa and Promotes Wound Healing in a Murine Model of Burn Wound Infection. Infection and immunity, 89(11), e00336-21.
Carugati, M., Piazza, A., Peri, A.M., Cariani, L., Brilli, M., Girelli, D., Di Carlo, D., Gramegna, A., Pappalettera, M., Comandatore, F. & Grasselli, G. (2020). Fatal respiratory infection due to ST308 VIM-1-producing Pseudomonas aeruginosa in a lung transplant recipient: case report and review of the literature. BMC infectious diseases, 20(1), 1-7.
Ejikeugwu, C., Esimone, C., Iroha, I., Eze, P., Ugwu, M. & Adikwu, M. (2018). Genotypic and phenotypic characterization of MBL genes in Pseudomonas aeruginosa isolates from the non-hospital environment. Journal of Pure and Applied Microbiology, 12(4), 1877-1885.
Eslami, M., Ghasemian, A., Najafiolya, Z., Mirforughi, S.A. & Nojoomi, F. (2018). Silymarin and curcumin effects on virulence and carbapenemase genes among multidrug-resistant Escherichia coli clinical isolates. Reviews in Medical Microbiology, 29(4), 177-181.
Fang, Y., Baloch, Z., Zhang, W., Hu, Y., Zheng, R., Song, Y., Tai, W. & Xia, X. (2022). Emergence of Carbapenem-Resistant ST244, ST292, and ST2446 Pseudomonas aeruginosa Clones in Burn Patients in Yunnan Province. Infection and Drug Resistance, 15,1103–1114.
Ghasemian, A., Rizi, K.S., Vardanjani, H.R. & Nojoomi, F. (2018). Prevalence of clinically isolated metallo-beta-lactamase-producing Pseudomonas aeruginosa, coding genes, and possible risk factors in Iran. Iranian Journal of Pathology, 13(1),1-9
Hassett, D.J., Kovall, R.A., Schurr, M.J., Kotagiri, N., Kumari, H. & Satish, L. (2021). The Bactericidal Tandem Drug, AB569: How to Eradicate Antibiotic-Resistant Biofilm Pseudomonas aeruginosa in Multiple Disease Settings Including Cystic Fibrosis, Burns/Wounds and Urinary Tract Infections. Frontiers in Microbiology, 12,1-17.
Hu, Y., Qing, Y., Chen, J., Liu, C., Lu, J., Wang, Q., Zhen, S., Zhou, H., Huang, L. & Zhang, R. (2021). Prevalence, Risk Factors, and Molecular Epidemiology of Intestinal Carbapenem-Resistant Pseudomonas aeruginosa. Microbiology spectrum, 9(3),1-8.
Jabalameli, F., Taki, E., Emaneini, M. & Beigverdi, R. (2018). Prevalence of metallo-β-lactamase-encoding genes among carbapenem-resistant Pseudomonas aeruginosa strains isolated from burn patients in Iran. Revista da Sociedade Brasileira de Medicina Tropical, 51, 270-276.
Joji, R.M., Al-Rashed, N., Saeed, N.K. & Bindayna, K.M. (2019). Detection of VIM and NDM-1 metallo-beta-lactamase genes in carbapenem-resistant Pseudomonas aeruginosa clinical strains in Bahrain. Journal of laboratory physicians, 11(02),138-143.
Khademi, F., Ashrafi, S.S., Neyestani, Z., Vaez, H. & Sahebkar, A. (2021). Prevalence of class I, II and III integrons in multidrug-resistant and carbapenem-resistant Pseudomonas aeruginosa clinical isolates. Gene Reports, 25,101407.
Khosravi, A.D., Taee, S., Dezfuli, A.A., Meghdadi, H. & Shafie, F. (2019). Investigation of the prevalence of genes conferring resistance to carbapenems in Pseudomonas aeruginosa isolates from burn patients. Infection and drug resistance, 12, 1153-1159.
Mahfoud, M., Al Najjar, M. & Hamzeh, A.R. (2015). Multidrug resistance in Pseudomonas aeruginosa isolated from nosocomial respiratory and urinary infections in Aleppo, Syria. The Journal of Infection in Developing Countries, 9(02), 210-213.
Mathlouthi, N., Areig, Z., Al Bayssari, C., Bakour, S., Ali El Salabi, A., Ben Gwierif, S., Zorgani, A.A., Ben Slama, K., Chouchani, C. & Rolain, J.M. (2015). Emergence of carbapenem-resistant Pseudomonas aeruginosa and Acinetobacter baumannii clinical isolates collected from some Libyan hospitals. Microbial Drug Resistance, 21(3), 335-341.
Muddassir, M., Munir, S., Raza, A., Basirat, A., Ahmed, M., Farooq, U., Ahmed, S.S. & Naqvi, S.Z.H. (2021). Epidemiology and high incidence of metallo-β-lactamase and AmpC-β-lactamases in nosocomial Pseudomonas aeruginosa. Iranian Journal of Basic Medical Sciences, 24(10), 1373–1379.
Neumann, B.R., Pospiech, A. & Schairer, H.U. (1992). Rapid isolation of genomic DNA from gram-negative bacteria. Trends in genetics: TIG, 8(10), 332-333.
Odoi, H., Boamah, V.E., Boakye, Y.D. & Agyare, C. (2021). Prevalence and phenotypic and genotypic resistance mechanisms of multidrug-resistant Pseudomonas aeruginosa strains isolated from clinical, environmental, and poultry litter samples from the Ashanti region of Ghana. Journal of Environmental and Public Health, 2021, 1-12
Olaniran, O.B., Adeleke, O.E., Donia, A., Shahid, R. & Bokhari, H. (2022). Incidence and Molecular Characterization of Carbapenemase Genes in Association with Multidrug-Resistant Clinical Isolates of Pseudomonas aeruginosa from Tertiary Healthcare Facilities in Southwest Nigeria. Current Microbiology, 79(1), 1-14.
Radhika, A., Lakshmi, J.T., Ariyanachi, K. & Sakthivadivel, V. (2022). Detection of Metallo Beta-Lactamase (MBL) Producing Pseudomonas aeruginosa in a Tertiary Care Hospital, Ghanpur, Medchal, India. Maedica, 17(1), 134-142
Ramadan, R.A., Gebriel, M.G., Kadry, H.M. & Mosallem, A. (2018). Carbapenem-resistant Acinetobacter baumannii and Pseudomonas aeuginosa: characterization of carbapenemase genes and E-test evaluation of colistin-based combinations. Infection and drug resistance, 11, 1261–1269.
Salimi, F. & Eftekhar, F. (2014). Prevalence of blAbstractP and blaVIM gene carriage in metallo-\beta-lactamase-producing burn isolates of Pseudomonas aeruginosa in Tehran. Turkish journal of medical sciences, 44(3), 511-514.
Shamkhali, L. & Shahriari, M. (2021). Incidence of Dominant Metallo-β-Lactamase Resistance Genes Produced in Pseudomonas aeruginosa Burn Infections in Iran: A Systemic Review and Meta-Analysis. Infection Epidemiology and Microbiology, 7(2), 173-185.
Sid Ahmed, M.A., Khan, F.A., Sultan, A.A., Söderquist, B., Ibrahim, E.B., Jass, J. & Omrani, A.S. (2020). β-lactamase-mediated resistance in MDR-Pseudomonas aeruginosa from Qatar. Antimicrobial Resistance & Infection Control, 9(1), 1-5.
Tchakal-Mesbahi, A., Metref, M., Singh, V.K., Almpani, M. & Rahme, L.G. (2021). Characterization of antibiotic resistance profiles in Pseudomonas aeruginosa isolates from burn patients. Burns, 47(8), 1833-1843.
Tunyapanit, W., Pruekprasert, P., Laoprasopwattana, K. & Chelae, S. (2021). Prevalence of Imipenemase and Verona Integron-Encoded Metallo-β-Lactamase in Imipenem-Resistant Pseudomonas aeruginosa. Journal of Health Science and Medical Research, 39(6), 459-465.
Vala, M.H., Hallajzadeh, M., Hashemi, A., Goudarzi, H., Tarhani, M., Tabrizi, M.S. & Bazmi, F. (2014). Detection of Ambler class A, B and D ß-lactamases among Pseudomonas aeruginosa and Acinetobacter baumannii clinical isolates from burn patients. Annals of Burns and Fire Disasters, 27(1), 8-13.
Yoon, E.J. & Jeong, S.H. (2021). Mobile carbapenemase genes in Pseudomonas aeruginosa. Frontiers in microbiology, 12, 1-21
Zheng, D., Bergen, P.J., Landersdorfer, C.B. & Hirsch, E.B. (2022). Differences in Fosfomycin Resistance Mechanisms between Pseudomonas aeruginosa and Enterobacterales. Antimicrobial agents and chemotherapy, 66(2), 1-21.
Zorgani, A., Abofayed, A., Glia, A., Albarbar, A. & Hanish, S. (2015). Prevalence of device-associated nosocomial infections caused by gram-negative bacteria in a trauma intensive care unit in Libya. Oman medical journal, 30(4), 270-275
Section
Research Articles

How to Cite

Investigation of blaIMP-1, blaVIM-1, blaOXA-48 and blaNDM-1 carbapenemase encoding genes among MBL-producing Pseudomonas aeruginosa. (2022). Journal of Applied and Natural Science, 14(3), 740-745. https://doi.org/10.31018/jans.v14i3.3532