##plugins.themes.bootstrap3.article.main##

Shubham Raturi Pallavi Singh https://orcid.org/0000-0003-4537-4607 Saurabh Kumar Jha Santosh Kumar Karn

Abstract

As the energy demand is continuously rising with the increase in population, the use of fossil fuels is also increasing at the same rate. These fossil fuels release greenhouse gases (GHG) which are harmful to human health and our environmental health and these fuels are also expected to exhaust in the near future. This eventually has led to an emerging need to shift to a more reliable, sustainable, clean energy source. Biohydrogen as fuel is a potential alternative, as hydrogen has proved to be one such fuel which has the potential to replace fossil fuels. There is a need to produce it in a clean, sustainable way to compete with the fuels that are being used currently. The hydrogen which is produced biologically is known as biohydrogen. Microorganisms also play a huge role in the process of hydrogen generation by virtue of their natural mechanism. Hydrogen can be produced biologically using approaches like biophotolysis (direct and indirect), fermentation (dark and photo) and microbial electrolysis cell (MEC). Among all, dark fermentation seems to be the most efficient when compared to other procedures. The challenges currently being faced with this technology are the yield of hydrogen, the high cost of the reactor and system efficiency. This technology still needs a lot of research and improvement to replace fossil fuels entirely.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Algae, Biofuel, Biohydrogen, Fermentation, Future fuel, Microbes

References
Acar, C., Dincer, I. & Naterer, G. F. (2016). Review of photocatalytic water-splitting methods for sustainable hydrogen production. International Journal Of Energy Research, 40, 1449-1473.  https://doi.org/10.1002/er.3549
Angenent, L.T., Karim, K., Al Dahhan, M.H. & Domiguez Espinosa, R. (2004). Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol., 22(9),477 – 485. https://doi.org/10.10 16/j.tibtech.2004.07.001
Banu J, R., Mohamed Usman, T. M.,Kavitha, S., R. YukeshKannah, Yogalakshmi, K. N., Sivashanmugam, P., Bhatnagar, A. & Kumar, G. (2021). A critical review on limitations and enhancement strategies associated with biohydrogen production, International Journal of Hydrogen Energy, 46(31), 16565-16590. https://doi.org/10.1016/j.ijhydene.2021.01.075.
Barbosa, M.J., Rocha, J.M., Tramper, J. & Wijffels, R.H. (2001). Acetate as a carbon source for hydrogen production by photosynthetic bacteria. J. Biotechno., 85, 25–33 https://doi.org/10.1016/s0168-1656(00)00368-0
Batyrova, K., Gavrisheva, A., Ivanova, E., Liu, J. & Tsygankov, A. (2015). Sustainable hydrogen photoproduction by phosphorus-deprived marine green microalgae Chlorella sp. Int J Mol Sci., 16, 2705–2716. https://doi.org/10.3390/ijms16022705
Baykara, S. Z. (2018). Hydrogen: A brief overview on its sources, production and environmental impact. International Journal of Hydrogen Energy, 43(23), 10605-10614 https://doi.org/10.1016/j.ijhydene.2018.02.022
Boboescu, I. Z., Gherman, V. D., Lakatos, G., Pap, B., Bíró, T. & Maróti, G. (2016). Surpassing the current limitations of biohydrogen production systems: The case for a novel hybrid approach. Bioresource Technology, 204, 192-201.http://dx.doi.org/10.1016/j.biortech.2015.12.083
Brentner, L. B., Peccia, J. & Zimmerman J. B.(2010). Challenges in Developing Biohydrogen as a Sustainable Energy Source: Implications for a Research Agenda. Environ. Sci. Technol., 44, 2243–2254. https://doi.org/10.1021/es9030613
Cabrol, L., Marone, A., Venegas, E. S., Steyer, J. P.,Filippi, G. R. & Trably, E. (2017). Microbial ecology of fermentative hydrogen producing bioprocesses: useful insights for driving the ecosystem function. FEMS Microbiology Reviews, 41(2), 158–181. https://doi.org/10.1093/femsre/fuw043
Cai, J. & Wang, G. (2013). Screening and hydrogen-producing characters of a highly efficient H2-producing mutant of Rhodovulum sulfidophilum P5. Bioresource Technology, 142, 18–25. https://doi.org/10.1016/j.biortech.2013.05.009
Cai, J., Wuc, Q., Wang, G. & Deng, C. (2013). Fermentative hydrogen production by a new mesophilic bacterium Clostridium sp. 6A-5 isolated from the sludge of a sugar mill. Renewable Energy, 59, 202-209. https://doi.org/10.10 16/j.renene.2013.03.021
Chandrasekhar, K., Kumar, S., Lee, B. D. & Kim, S. H. (2020), Waste based hydrogen production for circular bioeconomy: Current status and future directions. Bioresource Technology, 302, 122920. https://doi.org/10.1016/j.biortech.2020.122920
Chandrasekhar, K., Lee, Y.J.& Lee, D.W. (2015). Biohydrogen production: strategies to improve process efficiency through microbial routes. Int. J. Mol. Sci., 16, 8266–8293. https://doi.org/10.3390/ijms16048266
Cheng, S. & Logan, B. E. (2007). Sustainable and efficient biohydrogen production via electrohydrogenesis. Proc. Natl. Acad. Sci. U.S.A., 104, 18871–18873.https://doi.org/10.1073/pnas.0706379104
COP26: The Glasgow climate pact (2021). UN climate change conference UK 2021. https://ukcop26.org/wp-content/uploads/2021/11/COP26-Presidency-Outcomes-The-Climate-Pact.pdf
Cui, W., Lu, Y., Zeng, C., Yao, J., Liu, G., Luo, H. & Zhang, R. (2021). Hydrogen production in single-chamber microbial electrolysis cell under high applied voltages. The Science of the Total Environment, 780, 146597. https://doi.org/10.1016/j.scitotenv.2021.146597
Dahiya, S., Chatterjee, S., Sarkar, O. & Mohan, S. V. (2021). Renewable hydrogen production by dark-fermentation: Current status, challenges and perspectives. Bioresource technology, 321, 124354. https://doi.org/10.1016/j.biortech.2020.124354
Das, S. R. & Basak, N. (2021). Molecular biohydrogen production by dark and photo fermentation from wastes containing starch: recent advancement and future perspective. Bioprocess and Biosystems Engineering, 44(1), 1-25. https://doi.org/10.1007/s00449-020-02422-5
Demirbas, A. (2009), Biohydrogen for Future Engine Fuel Demands. Springer London.  https://doi.org/10.1007/978-1-84882-511-6
Dunn S. (2002). Hydrogen futures: toward a sustainable energy system. International Journal of Hydrogen Energy, 27(3), 235-264. https://doi.org/10.1016/S0360-3199(01)00131-8
EIA (Energy Information Administration) – 820 (2016). https://www.eia.gov/todayinenergy/detail.php?id=24612
Gosse, J. L., Engel, B. J., Rey, F. E., Harwood, C. S., Scriven, L. E. & Flickinger, M. C. (2007). Hydrogen production by photoreactive nanoporous latex coatings of nongrowing Rhodopseudomonas palustris CGA009. Biotechnol. Prog., 23,124−130. https://doi.org/10.1021/bp0 60254+
Hallenbeck, P. C. & Benemann J. R. (2002). Biological hydrogen production; fundamentals and limiting processes. International Journal of Hydrogen Energy, 27, 1185-1193. https://doi.org/10.1016/S0360-3199(02)00131-3
Hitam, C.N.C. & Jalil, A.A. (2020). A review on biohydrogen production through photo-fermentation of lignocellulosic biomass. Biomass Conv. Bioref.  https://doi.org/10.1007/s13399-020-01140-y
Hoshino, T., Johnson, D. J., Scholz, M. & Cuello, J. L. (2013). Effects of implementing PSI-light on hydrogen production via biophotolysis in Chlamydomonas reinhardtii mutant strains. Biomass Bioenergy, 59, 243–252. https://doi.org/10.1016/j.biombioe.2013.09.004
Ike, A., Murakawa, T., Kawaguchi, H., Hirata, K. & Miyamoto, K. (1999). Photoproduction of hydrogen from raw starch using a halophilic bacterial community. J. Biosci. Bioeng., 88, 72–77. https://doi.org/10.1016/s1389-1723(99)80179-0
IRENA (2018), Hydrogen from renewable power: Technology outlook for the energy transition. International Renewable Energy Agency, Abu Dhabi
Jayasinghearachchi, H. S., Sarma, P. M. & Singh, S.(2009). Fermentactive hydrogen production by two novel strains of Enterobacter aerogenes HGN-2 and HT 34 isolated from sea buried crude oil pipelines. International Journal of Hydrogen Energy, 34, 7197–7207. https://doi.org/10.1016/j.ijhydene.2009.06.079
Jo, J. H., Lee, D. S. & Park, J. M. (2006). Modeling and Optimization of Photosynthetic Hydrogen Gas Production by Green Alga Chlamydomonas reinhardtii in Sulphur-Deprived Circumstance. Biotechnol. Prog., 22,431-437. https://doi.org/10.1021/bp050258z
Kadier, A., Simayi, Y., Abdeshahian, P., Azman, N. F., Chandrasekhar, K. & Kalil, M. S. (2015). A comprehensive review of microbial electrolysis cells (MEC) reactor designs and configurations for sustainable hydrogen gas production. Alexandria Engineering Journal, 55, 427-443. https://doi.org/10.1016/j.aej.2015.10.008
Kant Bhatia, S., Palai, A. K., Kumar, A., Kant Bhatia, R., Kumar Patel, A., Kumar Thakur, V., & Yang, Y. H. (2021). Trends in renewable energy production employing biomass-based biochar. Bioresource Technology, 340, 125644. https://doi.org/10.1016/j.biortech.2021.125644
Kim, D. H. & Kim, M. S. (2013). Development of a novel three-stage fermentation system converting food waste to hydrogen and methane. Bioresource. Technology, 127, 267–274. https://doi.org/10.1016/j.biortech.2012.09.088
Kosourov, S.N., Ghirardi, M.L. & Seibert, M. (2011). A truncated antenna mutant of Chlamydomonas reinhardtiican produce more hydrogen than the parental strain. International Journal of Hydrogen Energy, 36,2044-2048. https://doi.org/10.1016/j.ijhydene.2010.10.041
Kotay, S. M. & Das, D. (2008). Biohydrogen as a renewable energy resource—Prospects and potentials. International Journal of Hydrogen Energy, 33, 258–263. https://doi.org/10.1016/j.ijhydene.2007.07.031
Koyama, K. (2017). The Role and Future of Fossil Fuel. IEEJ Energy Journal, Special Issue, 80-83.https://eneken.ieej.or.jp/data/7647.pdf
Kuang, Y., Zhao, J., Gao, Y., Lu, C., Luo, S., Sun, Y., & Zhang, D. (2020). Enhanced hydrogen production from food waste dark fermentation by potassium ferrate pretreatment. Environmental science and pollution research international, 27 (15), 18145–18156. https://doi.org/10.1007/s11356-020-08207-3
Kumar, G. & Lin, C. Y. (2014). Biogenic hydrogen conversion of de-oiled Jatropha waste (DJW) via anaerobic sequencing batch reactor operation: process performance, microbial insights and CO2 reduction efficiency. Sci. World J., 1–9.https://doi.org/10.1155/2014/946503
Kumar, S., Sharma, S., Thakur, S., Mishra, T., Negi, P., Mishra, S., Hesham, A.E.-L., Rastegari, A.A., Yadav, N.& Yadav, A.N. (2019). Bioprospecting of Microbes for Biohydrogen Production: Current Status and Future Challenges.Bioprocessing for Biomolecules Production (eds G. Molina, V. Gupta, B. Singh and N. Gathergood). https://doi.org/10.1002/9781119434436.ch22
Levin, D. B., Pitt, L. & Love, M. (2004). Biohydrogen production: prospects and limitations to practical application. International Journal of Hydrogen Energy, 29, 173–185. https://doi.org/10.1016/S0360-3199(03)00094-6
Lindberg, P., Devine, E., Stensjo, K. & Lindblad, P. (2012). HupWprotease specifically required for processing of the catalytic subunit of the uptake hydrogenase in the cyanobacterium Nostoc sp. strain PCC 7120. Appl. Environ. Microbiol., 78, 273–276. https://doi.org/10.1128/AEM.05957-11
Liu, H. & Wang, G.(2013). Characteristics of hydrogen production by an aciduric transposon-mutagenized strain of Pantoea agglomerans BH18. International Journal of Hydrogen Energy, 38, 13192-13197. https://doi.org/10.10 16/j.ijhydene.2013.07.065
Liu, W. Z., Wang, A. J., Ren, N. Q., Zhao, X. Q.,  Liu, L. H.,Yu, Z. G. & Lee, D. J.(2008). Electrochemically assisted biohydrogen production from acetate. Energy & Fuels. 22,159–163.https://doi.org/10.1021/ef700293e
Logan, B. E., Call, D., Cheng, S., Hamelers, H. V., Sleutels, T. H. & Jeremiasse, A. W. (2008). Microbial electrolysis cells for high yield hydrogen gas production from organic matter. Environ. Sci.Technol., 42, 8630–8640.https://doi.org/10.1021/es801553z
Mahidhara, G., Burrow, H., Sasikala, C. & Ramana, C. V. (2019). Biological hydrogen production: molecular and electrolytic perspectives. World Journal of Microbiology & Biotechnology, 35(8), 116. https://doi.org/10.1007/s11274-019-2692-z
Manish, S. & Banerjee, R. (2008). Comparison of biohydrogen production processes. International Journal of Hydrogen Energy, 33, 279 – 286. https://doi.org/10.1016/j.ijhydene.2007.07.026
Mazzoli, R. (2012). Development of microorganisms for cellulose-biofuel consolidated bioprocessings: metabolic engineers tricks.Computational and Structural Biotechnology Journal, 3(4), e201210007.http://dx.doi.org/10.5936/csbj.201210007
Mohr, A. & Raman, S. (2013). Lessons from first generation biofuels and implications for the sustainability appraisal of second generation biofuels. Energy Policy, 63, 114–122. https://doi.org/10.1016/j.enpol.2013.08.033
Nagarajan, D., Dong, C. D., Chen, C. Y., Lee, D. J. & Chang, J. S. (2021). Biohydrogen production from microalgae-Major bottlenecks and future research perspectives. Biotechnology Journal, 16(5), e2000124. https://doi.org/10.1002/biot.202000124
Nath, K. & Das, D. (2003). Hydrogen from biomass. Current Science, 85(3), 265-271.https://www.jstor.org/stable/24108654
Nyberg, M., Heidorn, T. & Lindblad, P. (2015). Hydrogen production by the engineered cyanobacterial strain Nostoc PCC 7120 hupW examined in a flat panel photobioreactor system. J Biotechnol., 215, 35–43. https://doi.org/10.1016/j.jbiotec.2015.08.028
Osman, A. I., Deka, T. J., Baruah, D. C. & Rooney, D. W.(2020). Critical challenges in biohydrogen production processes from the organic feedstocks. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-020-00965-x
Pandey, A., Sinha, P. & Pandey, A. (2021). Hydrogen production by sequential dark and photofermentation using wet biomass hydrolysate of Spirulina platensis: Response surface methodological approach. International Journal of Hydrogen Energy, 46 (10), 7137–7146. https://doi.org/10.1016/j.ijhydene.2020.11.205
Pandu, K. & Joseph, S. (2012). Comparison and Limitations of Biohydrogen Production Processes. Research Journal of Biotechnology, 7(2), 59-71.
Parry, M., Arnell, N., Hulme, M., Nicholls, R. & Livermore, M. (1998). Adapting to the inevitable. Nature, 395, 741. https://doi.org/10.1038/27316
Pattra, S., Sangyoka, S., Boonmee, M. & Reungsang, A. (2016). Bio-hydrogen production from the fermentation of sugarcane bagasse hydrolysate by Clostridium butyricum. International Journal of Hydrogen Energy, 33 (19), 5256–5265. https://doi.org/10.1016/j.ijhydene.2008.05.008
Pawar, S. S. & Niel, E. W. J. V. (2013). Thermophilic biohydrogen production: how far are we?. Applied Microbiol. Biotechnol., 97, 7999–8009. https://doi.org/10.1007/s00253-013-5141-1
Perera, N. (2019). Sustainable Energy, Engineering, Materials and Environment: current advances and challenges. Environmental science and pollution research international, 26(29), 29507–29508. https://doi.org/10.1007/s11356-019-06385-3
Poladyan, A., Trchounian, K., Vassilian, A. & Trchounian, A. (2018). Hydrogen production by Escherichia coli using brewery waste: Optimal pretreatment of waste and role of different hydrogenases. Renew. Energ., 115, 931–936.https://doi.org/10.1016/j.renene.2017.09.022
Prasad, S., Sheetal, K. R., Venkatramanan, V., Kumar, S. & Kannojia, S. (2019). Sustainable Energy: Challenges and Perspectives. In: Shah, S., Venkatramanan, V., Prasad, R. (eds) Sustainable Green Technologies for Environmental Management. Springer, Singapore. https://doi.org/10.1007/978-981-13-2772-8_9
Saratale, G. D., Kshirsagar, S. D., Saratale, R. G., Govindwar, S. P. & Oh, M. K. (2015). Fermentative hydrogen production using sorghum husk as a biomass feedstock and process optimization. Biotechnol. Bioprocess Eng., 20(4), 733–743. https://doi.org/10.1007/s12257-015-0172-3
Schenk, P. M., Thomas-Hall S. R., Stephens, E., Marx, U. C., Mussgnug, J. H., Posten, C., Kruse, O. & Hankamer, B. (2008). Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenerg Res., 1, 20–43. https://doi.org/10.1007/s12155-008-9008-8
Shahzad, U. (2015). The Need For Renewable Energy Sources.Information Technology & Electrical Engineering Journal, 4, 16-18.http://www.iteejournal.org/archive/vol4no4/v4n4_4.pdf
Shanmugam, S., Hari, A., Pandey, A., Mathimani, T., Felix, L. & Pugazhendhi, A.(2020). Comprehensive review on the application of inorganic and organic nanoparticles for enhancing biohydrogen production. Fuel, 270(4), 117453. https://doi.org/10.1016/j.fuel.2020.117453
Shi, X. Y. & Yu, H. Q. (2016). Simultaneous metabolism of benzoate and photobiological hydrogen production by Lyngbya sp. Renew Energy, 95, 474–477. https://doi.org/10.1016/j.renene.2016.04.051
Shin, J. H., Yoon, J. H., Ahn, E. K., Kim, M. S., Sim, S. J. & Park, T. H. (2007). Fermentative hydrogen production by the newly isolated Enterobacter asburiae SNU-1. International Journal of Hydrogen Energy, 32, 192–199. https://doi.org/10.1016/j.ijhydene.2006.08.013
Shin, J. H., Yoon, J. H., Lee, S. H. & Park, T. H. (2010). Hydrogen production from formic acid in pH-stat fed-batch operation for direct supply to fuel cell. Bioresour. Technol., 101, S53- S58.https://doi.org/10.1016/j.biortech.2009.0 3.032
Show, K. Y., Yan, Y., Zong, C., Guo, N., Chang, J. S. & Lee, D. J. (2019). State of the art and challenges of biohydrogen from microalgae. Bioresource Technology, 289, 121747. https://doi.org/10.1016/j.biortech.2019.121747
Sim, J., Reid, R., Hussain, A., An, J. & Lee, H. S. (2018). Hydrogen peroxide production in a pilot-scale microbial electrolysis cell. Biotechnology reports (Amsterdam, Netherlands), 19, e00276. https://doi.org/10.1016/j.btre.201 8.e00276
Singh, A.& Rathore, D.(2017). Biohydrogen Production: Sustainability of Current Technology and Future Perspective, Springer https://doi.org/10.1007/978-81-322-3577-4_1
Singh, T., Alhazmi, A., Mohammad, A., Srivastava, N., Haque, S., Sharma, S., Singh, R., Yoon, T. & Gupta, V. K.(2021). Integrated biohydrogen production via lignocellulosic waste: Opportunity, challenges & future prospects, Bioresource Technology, 338, 125511. https://doi.org/10.1016/j.biortech.2021.125511
Sivaramakrishnan, R., Shanmugam, S., Sekar, M., Mathimani, T., Incharoensakdi, A., Kim, S. H., Parthiban, A., Geo, V. E., Brindhadevi, K. & Pugazhendhi, A. (2021). Insights on biological hydrogen production routes and potential microorganisms for high hydrogen yield, Fuel, 291, 120136.https://doi.org/10.1016/j.fuel.2021.120136.
Song, W., Ding, L., Liu, M., Cheng, J., Zhou, J., & Li, Y. Y. (2020). Improving biohydrogen production through dark fermentation of steam-heated acid pretreated Alternanthera philoxeroides by mutant Enterobacter aerogenes ZJU1. The Science of the total environment, 716, 134695. https://doi.org/10.1016/j.scitotenv.2019.134695
Srivastav, A. K. & Rather, M. A. H. (2021). A Study on biohydrogen production based on biophotolysis from Cyanobacteria. Annals of the Romanian Society for Cell Biology, 25(6),12500–12509.https://annalsofrscb.ro/index.php/journal/article/view/7933
Srivastava, N., Srivastava, M., Allah, E. F. A., Singh, R., Hashem, A. & Gupta, V. K. (2021). Biohydrogen production using kitchen waste as the potential substrate: A sustainable approach. Chemosphere, 271, 129537. https://doi.org/10.1016/j.chemosphere.2021.129537
Srivastava, N., Srivastava, M., Malhotra, B. D., Gupta, V. K., Ramteke, P. W., Silva, R. N., Shukla, P., Dubey, K. K. & Mishra, P. K. (2019). Nanoengineered cellulosic biohydrogen production via dark fermentation: A novel approach. Biotechnology advances, 37(6), 107384. https://doi.org/10.1016/j.biotechadv.2019.04.006
Sveshnikov, D. A.,  Sveshnikova, N. V., Rao, K. K. & Hall, D.O. (1997). Hydrogen metabolism of mutant forms of Anabaena variabilis in continuous cultures and under nutritional stress. FEMS Microbiology Letters, 147(2), 297-301. https://doi.org/10.1111/j.1574-6968.1997.tb10257.x
Tian, Q. Q., Liang, L. & Zhu, M. J. (2015). Enhanced biohydrogen production from sugarcane bagasse by Clostridium thermocellum supplemented with CaCO3. Bioresour. Technol., 197, 422–428. https://doi.org/10.1016/j.biort ech.2015.08.111
Tiang, M. F., Hanipa, M. A. F., Abdul, P. M., Jahim, J. M., Mahmod, S. S., Takriff, M. S. & Wu, S. Y. (2020). Recent advanced biotechnological strategies to enhance photo-fermentative biohydrogen production by purple non-sulphur bacteria: an overview. International Journal of Hydrogen Energy, 45(24), 13211-13230.https://doi.org/10.1016/j.ijhydene.2020.03.033
Turon, V., Trably, E., Fayet, A., Fouilland, E. & Steyer, J.P. (2015). Raw dark fermentation to support heterotrophic microalgae growth: Microalgae successfully outcompete bacteria for acetate. Algal Res., 12, 119-125. https://doi.org/10.1016/j.algal.2015.08.011
Usman, T. M. M., Preethi., Banu J. R., Gunasekaran, M. & Kumar, G. (2019). Biohydrogen production from industrial wastewater: An overview, Bioresource Technology Reports, 7, 100287. https://doi.org/10.1016/j.biteb.2019.100 287
Uyar, B., Eroglu, I., Yucel, M. & Gunduz, U. (2009). Photofermentative hydrogen production from volatile fatty acids present in dark fermentation effluents. International Journal of Hydrogen Energy, 34, 4517–4523. https://doi.org/10.1016/j.ijhydene.2008.07.057
Veeramalini, J. B., Selvakumari, I., Park, S., Jayamuthunagai, J. & Bharathiraja, B. (2019). Continuous production of biohydrogen from brewery effluent using co-culture of mutated Rhodobacter M 19 and Enterobacter aerogenes. Bioresource technology, 286, 121402. https://doi.org/10.1016/j.biortech.2019.121402
Weissman, J. C. & Benemann J. R. (1997). Hydrogen production by nitrogen-starved cultures of Anabaena cylindrica. Applied and Environmental Microbiology, 3(1), 123-131. https://doi.org/10.1128/aem.33.1.123-131.1977
Zhang, Q., Zhu, S., Zhang, Z., Zhang, H. & Xia, C. (2021). Enhancement strategies for photo-fermentative biohydrogen production: A review. Bioresource Technology, 340, 125601. https://doi.org/10.1016/j.biortech.2021.125601
Zheng, Y., Zhang, Q., Zhang, Z., Jing, Y., Hu, J., He, C. & Lu, C. (2022). A review on biological recycling in agricultural waste-based biohydrogen production: Recent developments. Bioresource Technology, 347, 126595. https://doi.org/10.1016/j.biortech.2021.126595
Citation Format
How to Cite
Raturi, S., Singh, P., Jha, S. K., & Karn, S. K. (2022). Biohydrogen: Opportunities and challenges as an alternative energy resource. Journal of Applied and Natural Science, 14(2), 692–701. https://doi.org/10.31018/jans.v14i2.3480
More Citation Formats:
Section
Research Articles