##plugins.themes.bootstrap3.article.main##

Samia GHARBI Pelias RAFANOMEZANTSOA Ryme TERBECHE Nassima DRAOU Noureddine KARKACHI

Abstract

Antagonistic bacteria contribute to the management of plant diseases by stimulating the natural defenses in the host and/or by ensuring direct biocontrol of the aggressors. The objective of this work was to isolate, identify and evaluate (in vitro) various Bacillus spp. for their potential to control phyopathogenic fungi. Selection of the 40 strains of Bacillus previously isolated from the soil in various areas of western Algeria was carried out by direct confrontation on the mycelial growth of four phytopathogens (Fusariumoxysporumf.splycopersici, Alternaria tenuis , Phytophthorainfestans, Ascochytapisi). This strategy involved using the antagonistic potential of microorganisms found in the plant environment in Algeria. The second part of this work consisted of the characterization and identification of tested strainsThe identification of the selected strains was carried out by biochemical tests. The results obtained showed that at the end of the fifth day, the most promising isolates showed antifungal activity and reached an inhibition rate of the mycelial growth of phytopathogenic fungi, respectively, F. oxysporumf. splycopersici 75%, A. tenuis 80%, P. infestans 83.30%, Ascochytapisi 67%. The potential antagonist of Bacillus tested in vitro by direct confrontation against 04 phytopathogenic fungi showed that all strains of Bacillus decreased fungal mycelial growth. Two strains of Bacillus B30 and B41 were found to have the most efficacy against Fusarium oxysporum f.sp. lycopersici, Alternaria tenius, Phytophtora infestans et Ascochyta pisi, with an inhibition rate of  65.25 and 72.25% respectively These results demonstrate that Bacillus sp. presenteds a potential for biological control. However, it is important to understand the mechanisms implemented by these bacteria to develop effective protection strategies.

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Antagonism, Bacillus, Biocontrol, Pest, Phytopathogens fungi

References
Adhya, T. Mishra , B. Annapurna, K. Verma, D. & Kumar, U. (2017). Advances in Soil Microbiology : Recent Trends and Future Prospects. Springer Singapore, 4.
Bettiol, W. & Morandi , M. (2009). Biocontrole de doenças de plantas: uso e perspectivas. Embrapa Meio Ambiente, Jaguariúna., 341.
Bouali , W. Malek , F. Sahin, F. & Abdelouahid , D. (2016). Morphological, physiological and biochemical characterizations of some soil isolates of Bacillus cereus group from Algeria. African Journal of Microbiology Research, 10(29), 1094-1103.
Diabankana, R. Afordoanyi, D. Safin, R. Nizamov, R. Karimova, L. & Validov, S. (2021). Antifungal Properties, Abiotic Stress Resistance, and Biocontrol Ability of Bacillus mojavensis PS17. Current Microbiology, 78(8), 3124-3132.
Djellout , H. Mekheldi , D. Belkacem , K. Raio, A. & Krimi, Z. (2019). Evaluation de potentiel de souche antagoniste de Bacillus spp. et de pseudomonas spp. Dans le contrôle d’agrobacterium spp. Pathogène impliqué dans la maladie de galle de collet. Revue Agrobio, 9(1), 1267-1283.
Fan , Z. Miao, C. Qiao , X. Zheng , Y. & Chen , H. (2016). Diversity, distribution, and antagonistic activities of rhizobacteria of Panax notoginseng. Journal of Ginseng Research, 40(2), 97-104.
Gerbore, J. Benhamou, N. Vallance, J. Le floch, G. Grizard, D. Regnault-roger, C. & Rey, P. (2014). Biological control of plant pathogens: advantages and limitations seen through the case study of Pythium oligandrum. Environmental Science Pollutio, 21, 4847-4860.
Gharbi , S. Karkachi, N. Kihal, M. & Henni, J. (2013). Carbon sources and pH effect on pectinolytic activity production by Ascochyta rabiei isolated from chickpea (Cicer arietinum L.) in West Algeria. African Journal of Microbiology Research, 7(27), 3483-3488.
Gharbi, S. Karkachi , N. Chhiba, M. Kihal, M. & Henni, J. (2015). Comparison of Ascochyta rabiei isolates for cultural characteristics and isozyme. International Journal of Biosciences, 6(4), 30-39.
Karimi, E. Safaie, N. Shams-baksh, M. & Mahmo, B. (2016). Bacillus amyloliquefaciens SB14 from rhizosphere alle-viates Rhizoctonia damping-off disease on sugar beet. Microbiological Research, 192, 221-230.
Karkachi, N. Gharbi, S. Kihal , M. & Henni, J. (2010). Biological control of Fusarium oxysporum f. sp. lycopersici isolated from algerian tomato by Pseudomonas fluorescens, Bacillus cereus, Serratia marcescens and Trichoderma harzianum. Research Journal of Agronomy, 4(2), 31-34.
Kerroum, F. Karkachi, N. Henni, J. & Kihal , M. (2015). Antagonistic effect of Trichoderma harzianum against Phytophthora infestans n the North-west of Algeria. International Journal of Agronomy and Agricultural Research, 6(4), 44-53.
Kharayat, B.S &Singh, Y.2018. Chapter 13 - Mycotoxins in Foods: Mycotoxicoses, Detection, and Management Microbial Contamination and Food Degradation Handbook of Food Bioengineering 395-421.
Madriz-Ordeñana, K. Pazarlar, S. Jørgensen, H. Nielsen, T. Zhang, Y. Nielsen, K. Thordal-Christensen, H. (2022). The Bacillus cereus Strain EC9 Primes the Plant Immune System for Superior Biocontrol of Fusarium oxysporum. Plants (Basel, Switzerland), 11(5), 687.
Peighamy-Ashnaei, S. Sharifi-Tehrani, A. Ahmadzadeh, M. & Behboudi, K. (2008). Interaction of media on production and biocontrol efficacy of Pseudomonas fluorescens and Bacillus subtilis against grey mould of apple. Communications in Agricultural and A and Applied Biological Sciences, 73(2), 249-255.
Perincherry, L. Lalak-Kańczugowska, J.&Stępień, L. (2019). Fusarium-Produced Mycotoxins in Plant-Pathogen Interactions. Toxins (Basel).11(11),- 664.
Saeed, O. Xiukang,W. Haider, F.U. Kučerik, J. Mumtaz, M.Z. Holatko, J. Naseem, M. Kintl, A Ejaz, M. Naveed, M. Brtnicky, M &Mustafa, A. (2021). Rhizosphere Bacteria in Plant Growth Promotion, Biocontrol, and Bioremediation of Contaminated Sites : A Comprehensive Review of Effects and Mechanisms. Int J Mol Sci.22(19):10529.
Saleh, A. Ul-Hassan, Z. Zeidan, R. Al-Shamary, N. Al-Yafei, T. Alnaimi , H.. Jaoua, S. (2021). Biocontrol Activity of Bacillus megaterium BM344-1 against Toxigenic Fungi. ACS Omega, 6(16), 10984-10990.
Spadaro, D. & Gullino, M. (2005). Improving the efficacy of biocontrol agents against soil-borne pathogens. Crop Protection, 24(7), 601-613.
Tejera , B.Heydrich, M.& Rojas , M. (2012). Antagonismo de Bacillus spp. frente a hongos fitopatógenos del cultivo del arroz (Oryza sativa L.). Rev. Protec. Veg, 27(2), 117-122.
Thampi, A. & Bhai, R. (2017). Rhizosphere actinobacteria for combating Phytophthora capsici and Sclerotium rolfsii, the major soil borne pathogens of black pepper (Piper nigrum L.). Biological Control, 109, 1-13.
Weller, D. (1988). Biological Control of Soil-borne Plant Pathogens in the Rhizosphere with Bacteria. Annual Review of Phytopathology, 26(1), 379-407.
Zhang, D. Gao, T. Li, H. Lei, B. & Zhu, B. (2017). Zhang, D., GaIdentification of antifungal substances secreted by Bacillus subtilis Z-14 that suppress Gaeumannomyces graminis var. tritici. Biocontrol Science and Technology, 27(2), 237-251.
Zhang, J. Cook, J. Nearing, J.T. Zhang, J. Raudonis, R. Glick, B.R. Langille, M.G.I. & Cheng, Z. (2021). Harnessing the plant microbiome to promote the growth of agricultural crops. Microbiological Research, 245. 126690.
Section
Research Articles

How to Cite

Evaluation of the antagonistic potential of bacterial strains isolated from Algerian soils for the biological control of phytopathogenic fungi. (2022). Journal of Applied and Natural Science, 14(2), 647-651. https://doi.org/10.31018/jans.v14i2.3479