##plugins.themes.bootstrap3.article.main##

Vinod Kumar Mishra https://orcid.org/0000-0002-5423-510X Rakesh Kumar Gupta Sumit Kunar Verma Uttam Kumar

Abstract

Phenols are ubiquitous pollutants, mainly from industrial effluent, causing pollution of natural water resources. The research focused on screening efficient phenol-degrading bacteria and kinetic modelling of phenol biodegradation and growth. Membrane filtration was used for the isolation of bacteria from the wastewater sample. The screening of phenol-degrading bacteria was based on the efficiency of phenol utilization. The strain with efficient phenol degradation capacity was  characterized by 16S rDNA sequencing and designated Acinetobacter baumannii W29. Biomass growth and phenol utilization rate of the strain were evaluated at different initial phenol concentrations (100-800 mgL-1). Specific growth rate data were fitted to five models, i.e. Monod, Haldane, Aiba, Teisser, and Webb model. The yield coefficient at different initial phenol concentrations was calculated from the slope of the specific growth rate (μ) versus the specific phenol utilization rate (q). The strain showed complete phenol degradation potential up to 1000 mgL-1. The maximal growth rate was achieved at 400 mgL-1  , which coincided with the maximum substrate utilization rate at the same concentration. The specific growth rate showed the best fit with the Haldane model. The strain had a yield coefficient of 0.70 (mg cell mg-1 phenol). The value of µ and Ks revealed the affinity of the strain for high-concentration phenol and the its ability to withstand high phenol concentrations. The kinetic growth behaviour of the strain fitted well with the Haldane model. The findings of the study could be applied to wastewater treatment with a high phenol load.

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Acinetobacter baumanii W29, Batch culture, Phenol utilization, Screening, 16S rRNA gene sequencing, Kinetic analysis

References
Abd El- Haleem, D., Beshay, U., Abdelhamid, A. O., Moawad, H., & Zaki, S. (2003). Effects of mixed nitrogen sources on biodegradation of phenol by immobilized Acinetobacter sp. strain W-17. African Journal of Biotechnology , 2(1), 8-12 https://doi.org/10.5897/AJB2003.000-1002
Acharya, K., Werner, D., Dolfing, J., Meynet, P., Tabraiz, S., Baluja, M. Q., Petropoulos, E., Mrozik, W. & Davenport, R. J. (2019). The experimental determination of reliable biodegradation rates for mono-aromatics towards evaluating QSBR models. Water Research, 160, 278-287 https://doi.org/10.1016/j.watres.2019.05.075
Adav, S. S., Chen, M. Y., Lee, D. J. & Ren, N. Q. (2007). Degradation of phenol by Acinetobacter strain isolated from aerobic granules. Chemosphere, 67, 1566-1572 https://doi.org/1/10.1016/j.chemosphere.2006.11.067
Agarry, S. E., Durojaiye, A.O. & Solomon, B. O. (2008). Microbial degradation of phenols: A review. International Journal of Environment and Pollution, 32, 12-28  https://doi.org/10.1504/IJEP.2008.016895
Agarry,S. E., Solomon, B.O. & Audu, T. O. K. (2010). Substrate utilization and inhibition kinetics: Batch degradation of phenol by indigenous monoculture of Pseudomonas aeruginosa. International Journal for Biotechnology and Molecular Biology Research, 1(2), 22-30
Ahmad, S.A., Shamaan, N.A., Syed, M.A. Khalid,A., Rahman, N. A. A., Khalil, K. A., Dahalan,F. A. & Shukor, M. Y. (2017). Meta-cleavage pathway of phenol degradation by Acinetobacter sp. strain AQ5NOL1. Rendiconti Lincei 28, 1–9 (2017). https://doi.org/10.1007/s12210-016-0554-2
Al-Khalid, T. & El-Naas, M. H. (2012). Aerobic biodegradation of phenols: A comprehensive review. Critical Review in Environmental Science and Technology, 42, 16, 1631-1690 https://doi.org/10.1080/10643389.2011.569872
APHA (2017). Standard Methods for the Examination of Water and Wastewater. Washington, DC: American Public Health Association.
Bakhshi, Z., Najafpour, G., Kariminezhad, E., Pishgar, R., Mousavi, N. & Taghizade, T. (2011). Growth kinetic models for phenol biodegradation in a batch culture of Pseudomonas putida. Environmental Technolology, 32, 1835-1841 https://doi.org/10.1080/09593330.2011.562925
Banerjee, I., Modak, J. M., Bandopadhyay, K., Das, D. & Maiti, B. R. (2001). Mathematical model for evaluation of mass transfer limitations in phenol biodegradation by immobilized Pseudomonas putida. Journal of Biotechnology , 87, 211–223 https://doi.org/10.1016/s0168-1656(01)00235-8
Bingham, E. & Coherssen, B.(2012). Patty’s toxicology. 6th Edn., John Wiley & Sons, Inc., Hoboken, NJ Bureau of Indian Standards (BIS) (1991): Specification for drinking water IS:10500: Bureau of Indian Standards, New Delhi.
Chakraborty, S., Ray, B. & Basu, L. (2015). Study of phenol biodegradation by an indigenous mixed consortium of bacteria. Indian Journal of Chemical Technology, 22, 227–233
Dey, S. & Mukherjee, S. (2010). Performance and kinetic evaluation of phenol biodegradation by mixed microbial culture in a batch reactor. International Journal of Water Resources and Environmental Engineering, 3, 40-49.
Downs, J. W. & Wills B. K. (2020). Phenol Toxicity. In: StatPearls [Internet]. Treasure Island(FL): StatPearls Publishing; 2020Jan-.Available from: https://www.ncbi.nl m.nih.gov/books/NBK542311/
Duan, W., Meng, F., Cui, H., Lin, Y., Wang, G. & Wu J. (2018). Ecotoxicity of phenol and cresols to aquatic organisms: a review. Ecotoxicology and Environmental Safety, 157, 441-456. https://doi.org/10.1016/j.ecoenv.20 18.03.0 89
e Silva, N. C. G., de Macedo, A. C., Pinheiro, Á. D. T. & Rocha, M. V. P. (2019): Phenol bioegradation by Candida tropicalis ATCC 750 immobilized on cashew apple bagasse. Journal of Environmental Chemical Engineering, 7, 103076 https://doi.org/10.1016/j.jece.2019.103076
Filipowicz, N., Momotko, M., Boczkaj, G., Pawlikowski, T., Wanarska, M. & Cieśliński, H. (2017): Isolation and Characterization of Phenol-Degrading Psychrotolerant Yeasts. Water Air and Soil Pollution, 228 (6): 210 https://doi.org/10.1007/s11270-017-3391-8
Gu, Q., Wu., Q., Zhang, J., Guo, W., Wu H. & Sun M. (2016). Community analysis and recovery of phenol degrading bacteria from drinking water biofilters. Frontiers in Microbiology, 7, 495 https://doi.org/10.3389/fmicb.2016.0 0495
Gu, Q., Wu, Q., Zhang, J., Guo, W., Wu, H. & Sun M. (2017). Acinetobacter sp. DW-1 immobilized on polyhedron hollow polypropylene balls and analysis of transcriptome and proteome of the bacterium during phenol biodegradation process. Scientific Reports, 7, 4863 https://doi.org/10.1038/s41598-017-04187-6
Hamner, S., Broadaway, S. C., Mishra. V. B, Tripathi, A., Mishra, R. K., Pulcini, E., Pyle, B. H. & Ford, T. E. (2007). Isolation of potentially pathogenic Escherichia coli O157: H7 from the Ganges river. Applied and Environmental Microbiology, 73, 2369-2372 https://doi.org/10.1128/AEM.00141-07
Hasan, S. A. & Jabeen, S. (2015). Degradation kinetics and pathway of phenol by Pseudomonas and Bacillus species. Biotechnology & Biotechnological Equipment, 29, 45-53 https://doi.org/10.1080/13102818.2014.991638
Holt, J.G., Krieg, N. R.. Sneath, P. H. A, Stanley, J. T. & Williams, S. T. (1994). Bergey's Manual of Determinative Bacteriology (9th ed.), Williams & Wilkins, Co., Baltimore (1994).
Hussain, A., Dubey, S. K. & Kumar, V. (2015). Kinetic study for aerobic treatment of phenolic wastewater. Water Resources and Industry, 11, 2015, 81-90, ISSN 2212-3717 https://doi.org/10.1016/j.wri.2015.05.002.
Kuc, M. E., Sara A., Menashe, O. & Kurzbaum, E. (2022). Efficient biodegradation of phenol at high concentrations by Acinetobacter biofilm at extremely short hydraulic retention times, Journal of Water Process Engineering, 47, 2022,102781 https://doi.org/10.1016/j.jwpe.2022.102781
Lim, J. W., Tan, J. Z. & Seng, C. E. Performance of phenol-acclimated activated sludge in the presence of various phenolic compounds. Applied Water Science 3, 515–525 https://doi.org/10.1007/s13201-013-0099-9
Lin, Y. H. & Cheng Y. S. (2020). Phenol Degradation Kinetics by Free and Immobilized Pseudomonas putida BCRC 14365 in Batch and Continuous-Flow Bioreactors.Processes, 8, 721 https://doi.org/10.3390/pr8060721
Liu, Z., Xie, W., Li, D., Peng, Y., Li Z. & Liu S. (2016). Biodegradation of phenol by bacteria strain Acinetobacter calcoaceticus PA isolated from phenolic wastewater. International journal of environmental research and public health, 13, 300 https://doi.org/10.3390/ijerph13030300
Mohanty S. S. & Jena, H. M. (2017). Biodegradation of phenol by free and immobilized cells of a novel Pseudomonas sp. NBM11. Brazilian Journal of Chemical Engineering, 34(01), 75-84 https://doi.org/10.1590/0104-6632.20170341s20150388 
Nandi, L., Panigrahi, A. K., Maitra, N., Chattopadhyay, A. P. & Manna, S. K. (2020). Isolation, characterization and growth kinetics of phenol hyper-tolerant bacteria from sewage-fed aquaculture system. Journal of Environmental Science and Health, Part A, 55(4), 333-344 https://doi.org/10.1080/10934529.2019.1694816
Nogina, T., Fomina, M., Dumanskaya, T., Zelena, L., Khomenko, L., Mikhalovsky, S., Podgorskyi, V. & Gadd, G. M. (2020). A new Rhodococcus aetherivorans strain isolated from lubricant-contaminated soil as a prospective phenol-biodegrading agent. Applied Microbiology and Biotechnology, 1-15 https://doi.org/10.1007/s00253-020-10385-6
Onysko, K. A.; Budman, H. M. & Robinson, C. W. (2000). Effect of temperature on the inhibition kinetics of Phenol biodegradation by Pseudomonas Putida Q5. Biotechnology and Bioengineering, 70, 291–299 https://doi.org/10.1 002/1097-0290(20001105)70:3<291::aid-bit6>3.0.co;2-y
Peng, S. S., Ling, N. S. & Rohana, A. (2018). Kinetics of biodegradation of phenol and p-nitrophenol by acclimated activated sludge. Journal of Physical Science, 29, 107-113  https://doi.org/10.21315/jps2018.29.s1.14
Saitou, N. & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406-425 https://doi.org/10.1093/oxfordjournals.molbev.a040454
Sathya, R., Rasi, M. & Rajendran, L. (2015). Non-linear analysis of Haldane kinetic model in phenol degradation in batch operations. Kinetics and Catalysis, 56,141-146 https://doi.org/10.1134/S0023158415020111
Sridevi, V., Lakshmi, M.V.V.C, Manasa, M., & Sravani, M. (2012). Metabolic pathways for the biodegradation of phenol. International Journal of Engineering Science and Advanced Technolology, 2, 695-705.
Srinivasan, R., Karaoz, U., Volegova, M., MacKichan, J., Kato-Maeda, M., Miller, S., Nadarajan, R., Brodie, E. L. & Lynch, S.V. (2015). Use of 16S rRNA gene for identification of a broad range of clinically relevant bacterial pathogens. PloS one,10, e0117617 (2015) https://doi.org/10.1371/journal.pone.0117617
Stoilova, I., Dimitrova, G., Angelova, G. & Krastanov, A. (2017). Biodegradation of phenol, catechol and 2, 4-dichlorophenol at higher initial inhibitory concentrations by Trametes versicolor1in a “fed-batch” process. Bulgarian Journal of Agricutural Science, 23, 988–993.
Szczyrba, M. E., Szczotka, A. & Bartelmus, G. (2016). Modelling of aerobic biodegradation of phenol by Stenotrophomonas maltophilia KB2 strain Proceedings of ECOpole, 10, 2016 https://doi.org/10.2429/proc.2016.10(1)057
Viggor, S., Jõesaar, M., Soares-Castro, P., Ilmjärv, T., Santos, P. M., Kapley, A. & Kivisaar, M. (2020). Microbial Metabolic Potential of Phenol Degradation in Wastewater Treatment Plant of Crude Oil Refinery: Analysis of Metagenomes and Characterization of Isolates. Microorganisms, 8(5), 652 https://doi.org/10.3390/microorganisms8 050652
Villegas, L. G. C., Mashhadi, N., Chen, M., Mukherjee, D., Taylor, K. E. & Biswas, N. (2016). A short review of techniques for phenol removal from wastewater. Current Pollution Reports, 2: 157-167 https://doi.org/10.1007/s40726-016-0035-3
Wang, S. J. & Loh, K. C. (1999). Modeling the role of metabolic intermediates in kinetics of phenol biodegradation. Enzyme and Microbial Technology, 25, 177–184 https://doi.org/10.1016/S0141-0229(99)00060-5
Wang, H., Li, Q., Peng , Y., Zhang, Z., Kuang, X., Hu, X., Ayepa, E., Han, X., Abrha, G.T., Xiang, Q., Yu, X., Zhao, K., Zou, L., Gu, Y., Li, X., Li, X., Chen, Q., Zhang, X., Liu, B. & Ma, M. (2020). Cellular analysis and comparative transcriptomics reveal the tolerance mechanisms of Candida tropicalis toward phenol. Frontiers in Microbiology, 11, 544 https://doi.org/10.3389/fmicb.2020.00544
Wasi, S., Tabrez, S. & Ahmad, M. (2013). Use of Pseudomonas spp. for the bioremediation of environmental pollutants: a review. Environ. Monit. Assess., 185, 8147-8155  https://doi.org/10.1007/s10661-013-3163-x
Yadzir, Z. H. M., Shukor, M. Y., Ahmad, A., Nazir, M. S., Shah, S. M. U. & Abdullah, M. A.  (2016). Phenol removal by newly isolated Acinetobacter baumannii strain Serdang 1 in a packed-bed column reactor. Desalination and Water Treatment, 57: 28, 13307-3317  https://doi.org/10.10 80/19443994.2015.1063459
Zhou, W., Guo, W., Zhou, H. & Chen, X. (2016). Phenol degradation by Sulfobacillus acidophilus TPY via the meta-pathway. Microbiological Research, 190, 37-45 https://doi.org/10.1016/j.micres.2016.05.005
Section
Research Articles

How to Cite

Screening and evaluation of phenol utilization and growth in Acinetobacter baumannii W29 of wastewater. (2023). Journal of Applied and Natural Science, 15(1), 280-288. https://doi.org/10.31018/jans.v15i1.3478