Article Main

Soon-Jeong Jeong

Abstract

Apple contains nutrients such as sugars, dietary fiber, and vitamins as well as bioactive phytochemicals such as organic acid, fatty acid and phenolic compounds. This study was conducted to confirm the applicability of apples as a bleaching agent and functional substances for the prevention of oral infectious diseases and maintenance of oral health by investigating the bovine teeth bleaching effect, anti-oral microbial activity, and inhibitory effect of halitosis of water-extracted apple (WEA). From the results of quantitative analysis of the surface color of bovine teeth, the application of WEA significantly increased the ΔE value, indicating a bleaching effect. In the case of 100mg/ml, the ΔE value increased as the WEA application time increased, and the bleaching effect was the greatest. Based on the results of the disk diffusion test and selective culture using CRT bacteria test kit, WEA showed anti-oral microbial activity against the dental caries bacteria, Streptococcus mutans and Latobacillus casei, the periodontal bacteria, Aggregatibacter actinomycetemcomitans, and Eschericha coli, but showed no antifungal effect against Candida albicans, causing oral candidiasis. From the results of colony formation and generation of halitosis from salivary microorganisms, WEA inhibited the growth of salivary microorganisms and generation of components inducing halitosis such as hydrogen sulfide, methyl mercaptan and dimethyl sulfide, that occur during the metabolic process of oral microorganisms. Therefore, WEA is a functional substance derived from a safe and useful natural product that can be used for the prevention of oral infectious diseases and maintenance of oral health

Article Details

Article Details

Keywords

Anti-oral microbial activity, Apple, Halitosis, Malus asiatica, Teeth bleaching

References
Attin, T., Kielbassa, A. M., Schwanenberg, M. & Hellwig, E. (1997). Effect of floride treatment on remineralization of bleached enamel. J. Oral Rehabil. 24, 282-286. https://doi.org/10.1111/j.1365-2842.1997.tb00327.x
Bauer, A. W., Kirby, W. M. M., Sherris, J. C. & Turcj, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 45 (4), 493-496. https://doi.org/10.1093/ajcp/45. 4_ts.493
Byun, R., Nadkarni, M. A., Chhour, K. L., Martin, F. E. & Jacques, N. A., Hunter N. (2004). Quantitative analysis of diverse Lactobacillus species present in advanced dental caries. Journal of Clinical Microbiology, 42 (7), 3128-3136. https://doi.org/10.1128/JCM.42.7.3128-3136.2004
Cho, J. J., Kim, H. S., Kim, C. W. & Cho, S. J. (2017). Interaction with polyphenols and antibiotics. Journal of Life Science, 27 (4), 476-482. https://doi.org/10.5352/JLS.201 7.27.4.476
Cowan, M. M. (1999). Plant products as antimicrobial agents. Clinical Microbiology Reviews, 12 (4), 564-582. https://doi.org/10.1128/CMR.12.4.564
Dahl, J. E. & Pallesen, U. (2003). Tooth bleaching-a critical review of the biological aspects. Crit. Rev. Oral Biol. Med. 14, 292-304. https://doi.org/10.1177/1544111303 01400406.
Eswar, P., Devaraj, C. G. & Agarwal P. (2016). Anti-microbial activity of Tulsi {Ocimum sanctum (Linn.)} extract on a periodontal pathogen in human dental plaque: an invitro study. J. Clin. Diagn Res. 10, ZC53-ZC56. https://doi.org/10.7860/JCDR/2016/16214.7468
Eumkeb, G., Sakdarat, S. & Siriwong, S. (2010). Reversing β-lactam antibiotic resistance of Staphylococcus aureus with galangin from Alpinia officinarum Hance and synergism with ceftazidime. Phytomedicine, 18, 40-45.
Hwang, G. W., Choi, M. S. & Lim, S. A. (2015). Improvement of bleaching effect on the color of enamel surface with TiO2 catalysis convergence bleaching agent. J. Korea Convergence. Soc. 6, 165-171. http://dx.doi.org/10.15207/JKCS.2015.6.5.165
Jeon, J.-G. Rosalen, P. Falsetta, M. & Koo H. (2011). Natural Products in Caries Research: Current (Limited) Knowledge, Challenges and Future Perspective. Caries Res. 45, 243–263.
Jeon, Y. M., Cho, J. W., Lee, J. Y. & Woo, S. H. (2015). The effects of oral microorganism on oral malodor. Int J Clin Prev Dent. 11 (3), 171-176.
Jeong, M. J., Lim, D. S., Lee, M. H, Heo, K., Kim, H. H. & Jeong, S. J. (2020). Inhibitory Effects on oral microbial activity and production of Lipopolysaccharides-Induced Pro-Inflammatory mediators in Raw264.7 Macrophages of Ethanol Extract of Perilla flutescens (L.) Britton. J Dent Hyg Sci. 20 (4), 213-220. https://doi.org/10.17135/jdhs.2020.20.4.213
Jeong, S. J. (2021). Effects of Citrus limon extract on oxidative stress-induced nitric oxide generation and bovine teeth bleaching. J Dent Hyg Sci. 21 (2), 96-103. https://doi.org/10.17135/jdhs.2021.21.2.96.
Kalinowska, M., Bielawska, A., Lewandowska-Siwkiewicz, H., Priebe, W. & Lewandowski, W. (2014). Apples: Content of phenolic compounds vs. variety, part of apple and cultivation model, extraction of phenolic compounds, biological properties. Plant Physiol. Biochem. 84, 169–188.
Kidon, M. & Grabowska, J. (2020). Bioactive compounds, antioxidant activity, and sensory qualities of red-fleshed apples dried by different methods. LWT. 136, 110302. https://doi.org/10.1016/j.lwt.2020.110302
Kim, M. Y., Choi, E. O. Kwon, D. H., Kim, H. J., Ahn, K. I., Ji, S. Y., Jeong, J. W., Park, S. H., Hong, S. H., Kim, G. Y., Park, C., Kim, H. W., Moon, S. K., Yun, S. J., Kim, W. J. & Choi, H. H. (2018). Induction of apoptosis by Citrus unshiu peel in human breast cancer MCF-7 cells: involvement of ROS-dependent activation of AMPK. Biol. Pharm Bull. 41, 713-721. https://doi.org/10.1248/bpb.b17-00898
Lee, K. H. & Kim, S. (2017). Utilization of resin infiltration for prolonging of tooth whitening effects. J Korean Acd Pediatr Dent. 44, 1-9. https://doi.org/10.5933/JKAPD.2017.44.1.1
Ma, B., Yuan Y., Gao, M, Ogutu, C., Li, M. & Ma, F. (2018). Determination of predominabt organic acid components in Malus species: correlation with apple domestication. Matabolites, 8 (4), 74. doi: 10.3390/metabo8040074.
Mazilu(Moldovan), A., Sarosi, C., Moldovan, M., Miuta, F., Prodan, D., Antoniae, A., Prejmerean, C., Dumitrescu, L. S., Popescu, V., Raicu, A. D. & Saceleanu, V. (2019). Preparation and characterization of natural bleaching gels used in cosmetic dentistry. Material, 12 (13). https://doi.org/10.3390/ma12132106.
McCann, M., Gill, C., Brien, G.O., Rao, J., McRoberts, W., Hughes, P., McEntee, R. & Rowland, I. (2007) Anti-cancer properties of phenolics from apple waste on colon carcinogenesis in vitro. Food Chem. Toxicol. 45, 1224–1230.
Nam, S. S. & Ko, K. S. (2020). Antioxidants of apple leaf extract. Journal of the Korean Applied Science and Technology, 37 (5), 1116-1124. https://doi.org/10.12925/jkocs.2020.37.5.1116
Nezbedova, L., McGhie, T., Christensen, M, Heyes, J, Nasef, N. A. & Mehta, S. (2021). Onco-Preventive and chemo-protective effects of apple bioactive compounds. Nutrients, 13, 4025. https://doi.org/10.3390/nu13114025
Palombo, E. A. (2011). Traditional medicinal plant extracts and natural products with activity against oral bacteria: Potential application in the prevention and treatment of oral diseases. Evidence Based Complement. Altern. Med. 2011, 1–15.
Pan, H., Wang, D. & Zhang, F. (2020). In vitro antimicrovial effect of curcumin-based photodynamic therapy
on porphyromonas gingivalis and aggregatibacter actinomycetemcomitans. Photodiagnosis and Photodynamic
Therapy, 32, 102055. https://doi.org/10.1016/j.pdpdt.20 20.1020 5 5
Park, E. S., Seong, S. R., Hong, S. T., Kim, J. E. & Lee, S. T. (2006). A clinical evaluation of a bleaching strip containing 2.09% hydrogen peroxide. Korean Acad. Conserv. Dent. 31, 269-281. https://doi.org/10.5395/JKACD.200 6.31.4.269
Park, J. W., Wendt, M. & Heo, G. J. (2016). Antimicrobial activity of essential oil of Eucalyptus globulus against fish phathogenic bacteria. Lab. Anim. Res. 32 (2), 87-90. DOI: https://doi.org/10.5625/lar.2016.32.2.87
Raybaudi-Massilia, R. M., Mosqueda-Melgar, J., Martin-Belloso, O. (2009). Antimicrobial activity of malic acid against Listeria monocytogenes, Salmonella Enteritidis and Escherichia coli o157:H7 in apple, pear and melon juices. Food control, 20, 105-112.
Sakanaka, S., Aizawa, M., Kim, M & Yamamotto, T. (1996). Inhibitory effects of green tea polyphenols on growth and cellular adherence of an oral bacterium, Porphyromonas gingivalis. Bioscience Biotechnology and Biochemistry, 60 (5), 745-749.  https://doi.org/10.1271/bbb.60.745
Scalbert, A. & Williamson, G. (2000). Dietary Intake and Bioavailability of Polyphenols. J. Nutr. 130, 2073S–2085S.
Shaheena, S., Chintagunta, A. D., Dirisala, V. R. & Kumar, N. S. S. (2019). Extraction of bioactive compounds from Psidium guajava and their application in dentistry. AMB Express, 9, 208. https://doi.org/10.1186/s13568-019-0935-x
Villa, A., Polimeni, A., Strohmenger, L., Cicciù, D., Gherlone, E. & Abati, S. (2011). Dental patients’ self-reports of xerostomia and associated risk factors. J. Am. Dent. Assoc. 142, 811–816.
Vinson, J. A., Su, X., Zubik, L. & Bose, P. (2001). Phenol antioxidant quantity and qQuality in foods: Fruits. J. Agric. Food Chem. 49, 5315–5321. https://doi.org/10.1021/jf0009293
Watts, A. & Addy, M. (2001). Tooth discolouration and staining: Tooth discolouration and staining: A review of the literature. Br. Dent. J. 190, 309–316.
Xu, X., Zhou, X. D. & Christine D. W. (2011). The tea catechin epigallocatechin gallate suppresses cariogenic virulence factors of streptococcus mutans. Antimicrovial Agents and Chemotherapy, 55 (3), 1229-1236. https://doi.org/10.1128/AAC.01016-10
Section
Research Articles

How to Cite

Teeth bleaching effect and anti-oral microbial activity of water-extracted apple (Malus asiatica). (2022). Journal of Applied and Natural Science, 14(2), 543-549. https://doi.org/10.31018/jans.v14i2.3470