##plugins.themes.bootstrap3.article.main##

Vikram https://orcid.org/0000-0002-1733-3667 Pooja https://orcid.org/0000-0002-2365-5099 Jyoti Sharma Asha Sharma https://orcid.org/0000-0002-8011-6614

Abstract

Brassinosteroid emerges as an essential phytohormone that helps the plant to maintain plant growth and development. It also helps the plants grow well under adverse conditions along with normal conditions. In this review article, we have discussed the functional role of brassinosteroid (BRS) in plants under salinity stress conditions. Salinity stress is one of the most devastating abiotic stresses which adversely affect plant growth by disturbing their metabolic pathway. This article also comprises the occurrence, structure and signalling pathway of the brassinosteroid. Application of brassinosteroid improves the plant status under salinity by enhancing the antioxidant enzyme activity in plants. Moreover, we also reported the different growth parameters enhanced by brassinosteroid application in plants under salinity. BRSs also maintain plant growth through the regulation of expression of various genes whose products are involved in various biochemical and physiological processes. This review is based on the various aspects in much detail which are required to understand the proper mechanism of BRS, such as i) the role of BRS signaling pathways in providing tolerance to the plants, ii) changes due to the presence or absence of BRS in plants under stress conditions, iii) BRSs application on the regulation of different genes and transcriptional factor, iv) regulation in ion homeostasis, v) reduction of oxidative stress via different mechanisms under salinity stress. However, a lot of knowledge is required to understand the role of BRS in alleviating salinity stress and needs future research work on BRS with its different derivatives in the alleviation of salt stress.        

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Brassinosteroid, Gene expression, Oxidative stress, Salt stress, Signaling pathway

References
Ahammed, G. J., Choudhary, S. P., Chen, S., Xia, X., Shi, K., Zhou, Y. & Yu, J. (2013). Role of brassinosteroids in alleviation of phenanthrene–cadmium co-contamination-induced photosynthetic inhibition and oxidative stress in tomato. Journal of Experimental Botany, 64(1), 199-213. DOI: 10.1093/jxb/ers323
Ahanger, M. A., Mir, R. A., Alyemeni, M. N. & Ahmad, P. (2020). Combined effects of brassinosteroid and kinetin mitigates salinity stress in tomato through the modulation of antioxidant and osmolyte metabolism. Plant Physiology and Biochemistry, 147, 31-42. DOI: 10.1016/j.plaphy.2019.12.007
Alam, P., Albalawi, T.H., Altalayan, F.H., Bakht, M.A., Ahanger, M.A., Raja, V., Ashraf, M. & Ahmad, P. (2019). 24-Epibrassinolide (EBR) confers tolerance against NaCl stress in soybean plants by up-regulating antioxidant system, ascorbate-glutathione cycle, and glyoxalase system. Biomolecules, 9(11), 640. DOI: 10.3390/biom9110640
Ali, B., Hayat, S., Fariduddin, Q., & Ahmad, A. (2008). 24-Epibrassinolide protects against the stress generated by salinity and nickel in Brassica juncea. Chemosphere, 72(9), 1387-1392. DOI: 10.1016/j.chemosphere.2008.04.012
Ali, Q., Daud, M.K., Haider, M.Z., Ali, S., Rizwan, M., Aslam, N., Noman, A., Iqbal, N., Shahzad, F., Deeba, F. & Ali, I. (2017). Seed priming by sodium nitroprusside improves salt tolerance in wheat (Triticum aestivum L.) by enhancing physiological and biochemical parameters. Plant Physiology and Biochemistry, 119, 50-58. DOI: 10.1016/j.plaphy.2017.08.010
Allakhverdiev, S. I., Sakamoto, A., Nishiyama, Y., Inaba, M. & Murata, N. (2000). Ionic and osmotic effects of NaCl-induced inactivation of photosystems I and II in Synechococcus sp. Plant physiology, 123(3), 1047-1056. DOI: 10.1104/pp.123.3.1047
Alzahrani, S. M., Alaraidh, I. A., Migdadi, H., Alghamdi, S., Khan, M. A. & Ahmad, P. (2019). Physiological, biochemical, and antioxidant properties of two genotypes of Vicia faba grown under salinity stress. Pakistan Journal of Botany, 51(3), 786-798. DOI: 10.30848/pjb2019-3(3)
Amirjani, M. R. (2011). Effect of salinity stress on growth, sugar content, pigments and enzyme activity of rice. International Journal of Botany, 7(1), 73-81. DOI: 10.3923/ijb.2011.73.81
Amraee, L., Rahmani, F. & Mandoulakani, B. A. (2020). Exogenous application of 24-epibrassinosteroid mitigates NaCl toxicity in flax by modifying free amino acids profile and antioxidant defence system. Functional Plant Biology, 47(6), 565-575. DOI: 10.1071/FP19191
Arora, N., Bhardwaj, R., Sharma, P. & Arora, H. K. (2008). Effects of 28-homobrassinolide on growth, lipid peroxidation and antioxidative enzyme activities in seedlings of Zea mays L. under salinity stress. Acta Physiologiae Plantarum, 30(6), 833-839. DOI: 10.3923/ajps.2007.765.772
Arora, S., & Sharma, V. (2017). Reclamation and management of salt-affected soils for safeguarding agricultural productivity. Journal of Safe Agriculture, 1(1), 1-10.
Arora, S., Singh, Y. P., Vanza, M. & Sahni, D. (2016). Bio-remediation of saline and sodic soils through halophilic bacteria to enhance agricultural production. Journal of Soil and Water Conservation, 15(4), 302-305. DOI:10.5958/2455-7145.2016.00027.8
Asami, T., Min, Y.K., Nagata, N., Yamagishi, K., Takatsuto, S., Fujioka, S., Murofushi, N., Yamaguchi, I. & Yoshida, S. (2000). Characterization of brassinazole, a triazole-type brassinosteroid biosynthesis inhibitor. Plant physiology, 123(1), 93-100. DOI: 10.1104/pp.123.1.93
Ashraf, M. & Orooj, A. (2006). Salt stress effects on growth, ion accumulation and seed oil concentration in an arid zone traditional medicinal plant ajwain (Trachyspermum ammi [L.] Sprague). Journal of Arid Environments, 64(2), 209-220. https://doi.org/10.1016/j.jaridenv.2005.04.015
Atkin, O. K. & Macherel, D. (2009). The crucial role of plant mitochondria in orchestrating drought tolerance. Annals of botany, 103(4), 581-597.  DOI: 10.1093/aob/mcn094
Azhar, N., Su, N., Shabala, L., & Shabala, S. (2017). Exogenously applied 24-epibrassinolide (EBL) ameliorates detrimental effects of salinity by reducing K+ efflux via depolarization-activated K+ channels. Plant and Cell Physiology, 58(4), 802-810. DOI: 10.1093/pcp/pcx026
Bai, M.Y., Shang, J.X., Oh, E., Fan, M., Bai, Y., Zentella, R., Sun, T.P. & Wang, Z.Y. (2012). Brassinosteroid, gibberellin and phytochrome impinge on a common transcription module in Arabidopsis. Nature cell biology, 14(8), 810-817. DOI: 10.1038/ncb2546
Bajguz, A. & Asami, T. (2005). Suppression of Wolffia arrhiza growth by brassinazole, an inhibitor of brassinosteroid biosynthesis and its restoration by endogenous 24-epibrassinolide. Phytochemistry, 66(15), 1787-1796. DOI: 10.1016/j.phytochem.2005.06.005
Bajguz, A. & Piotrowska-Niczyporuk, A. (2014). Interactive effect of brassinosteroids and cytokinins on growth, chlorophyll, monosaccharide and protein content in the green alga Chlorella vulgaris (Trebouxiophyceae). Plant Physiology and Biochemistry, 80, 176-183. DOI: 10.1016/j.plaphy.2014.04.009
Bardzik, J. M., Marsh Jr, H. V. & Havis, J. R. (1971). Effects of water stress on the activities of three enzymes in maize seedlings. Plant Physiology, 47(6), 828-831. DOI: 10.1104/pp.47.6.828
Behnamnia, M., Kalantari, K. M. & Ziaie, J. (2009a). The effects of brassinosteroid on the induction of biochemical changes in Lycopersicon esculentum under drought stress. Turkish Journal of Botany, 33(6), 417-428. DOI:10.3906/bot-0806-12
Behnamnia, M., Kalantari, K. M. & Rezanejad, F. (2009b) Exogenous application of brassinosteroid alleviates drought-induced oxidative stress in Lycopersicon esculentum L. General and Applied Plant Physiology, 35, 22–34
Betzen, B. M., Smart, C. M., Maricle, K. L. & MariCle, B. R. (2019). Effects of increasing salinity on photosynthesis and plant water potential in Kansas salt marsh species. Transactions of the Kansas Academy of Science, 122(1-2), 49-58. DOI:10.1660/062.122.0105
Bybordi, A. (2010). The influence of salt stress on seed germination, growth and yield of canola cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 38(1), 128-133. https://doi.org/10.15835/nbha3813572
Çağ, S., Gören-Sağlam, N., Çıngıl-Barış, Ç. & Kaplan, E. (2007). The effect of different concentration of epibrassinolide on chlorophyll, protein and anthocyanin content and peroxidase activity in excised red cabbage (Brassica oleraceae L.) cotyledons. Biotechnology & Biotechnological Equipment, 21(4), 422-425. https://doi.org/10.1080/13102818.2007.10817487
Camoni, L., Visconti, S., Aducci, P. & Marra, M. (2018). 14-3-3 proteins in plant hormone signaling: doing several things at once. Frontiers in Plant Science, 9, 297. https://doi.org/10.3389/fpls.2018.00297
Cardoso, K.P.S., Silva Conceicao, S., de Araújo Brito, A.E., da Silva Martins, J.T., Machado, L.C., Correa Costa, T., dos Santos Nogueira, G.A., do Nascimento, V.R., da Silva, R.P.P., Costa Paiva, R. & Correa Barbosa, A.V. (2019). Biochemical metabolism of two cultivars of cowpea treated with 24-Epibrassinolide and subjected to saline stress. Australian Journal of Crop Science, 13(3), 444-451.
Castorina, G. & Consonni, G. (2020). The role of brassinosteroids in controlling plant height in Poaceae: A genetic perspective. International Journal of Molecular Sciences, 21(4), 1191. https://doi.org/10.3390/ijms21041191
Chao, W. S., Gu, Y. Q., Pautot, V., Bray, E. A. & Walling, L. L. (1999). Leucine aminopeptidase RNAs, proteins, and activities increase in response to water deficit, salinity, and the wound signals systemin, methyl jasmonate, and abscisic acid. Plant Physiology, 120(4), 979-992. DOI: 10.1104/pp.120.4.979
Che, R., Tong, H., Shi, B., Liu, Y., Fang, S., Liu, D., Xiao, Y., Hu, B., Liu, L., Wang, H. & Zhao, M. (2015). Control of grain size and rice yield by GL2-mediated brassinosteroid responses. Nature plants, 2(1), 1-8. DOI: 10.1038/nplants.2015.195
Chmur, M. & Bajguz, A. (2021). Brassinolide Enhances the Level of Brassinosteroids, Protein, Pigments, and Monosaccharides in Wolffia arrhiza Treated with Brassinazole. Plants, 10(7), 1311. https://doi.org/10.3390/plants10071311
Chutipaijit, S., Cha-um, S. & Sompornpailin, K. (2011). High contents of proline and anthocyanin increase protective response to salinity in'Oryza sativa'L. spp.'indica'. Australian Journal of Crop Science, 5(10), 1191-1198.
Clouse, S. D. & Zurek, D. (1991). Molecular analysis of brassinolide action in plant growth and development.
Cui, J.X., Zhou, Y.H., Ding, J.G., Xia, X.J., Shi, K.A.I., Chen, S.C., Asami, T., Chen, Z. & YU, J.Q. (2011). Role of nitric oxide in hydrogen peroxide‐dependent induction of abiotic stress tolerance by brassinosteroids in cucumber. Plant, Cell & Environment, 34(2), 347-358. DOI: 10.1111/j.1365-3040.2010.02248.x
Datta, J. K., Nag, S., Banerjee, A. & Mondai, N. K. (2009). Impact of salt stress on five varieties of Wheat (Triticum aestivum L.) cultivars under laboratory condition. Journal of Applied Sciences and Environmental Management, 13(3). DOI: 10.4314/jasem.v13i3.55372
de Oliveira, V. P., Lima, M. D. R., da Silva, B. R. S., Batista, B. L. & da Silva Lobato, A. K. (2019). Brassinosteroids confer tolerance to salt stress in Eucalyptus urophylla plants enhancing homeostasis, antioxidant metabolism and leaf anatomy. Journal of Plant Growth Regulation, 38(2), 557-573.
Demetriou, G., Neonaki, C., Navakoudis, E., & Kotzabasis, K. (2007). Salt stress impact on the molecular structure and function of the photosynthetic apparatus—the protective role of polyamines. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1767(4), 272-280.  DOI: 10.1016/j.bbabio.2007.02.020
Demiral, T. & Türkan, I. (2006). Exogenous glycinebetaine affects growth and proline accumulation and retards senescence in two rice cultivars under NaCl stress. Environmental and Experimental Botany, 56(1), 72-79. DOI: 10.1016/j.envexpbot.2005.01.005
Deng, X. G., Zhu, T., Zhang, D. W. & Lin, H. H. (2015). The alternative respiratory pathway is involved in brassinosteroid-induced environmental stress tolerance in Nicotiana benthamiana. Journal of experimental botany, 66(20), 6219-6232. DOI: 10.1093/jxb/erv328
Díaz, S. H., Morejón, R. & Núñez, M. (2003). Effects of BIOBRAS-16 on rice (Oryza sativa L.) yield and other characters. Cultivos Tropicales, 24(2), 35-40.
Ding, H. D., Zhu, X. H., Zhu, Z. W., Yang, S. J., Zha, D. S. & Wu, X. X. (2012). Amelioration of salt-induced oxidative stress in eggplant by application of 24-epibrassinolide. Biologia plantarum, 56(4), 767-770. DOI: 10.1007/s10535-012-0108-0
Dong, Y., Wang, W., Hu, G., Chen, W., Zhuge, Y., Wang, Z., & He, M. R. (2017). Role of exogenous 24-epibrassinolide in enhancing the salt tolerance of wheat seedlings. Journal of soil science and plant nutrition, 17(3), 554-569. DOI:10.4067/S0718-95162017000300001
Ebrahimian, E. & Bybordi, A. (2012). Effect of salinity, salicylic acid, silicium and ascorbic acid on lipid peroxidation, antioxidant enzyme activity and fatty acid content of sunflower. African Journal of Agricultural Research, 7(25), 3685-3694. DOI: 10.5897// AJAR11.799
Efimova, M.V., Khripach, V.A., Boyko, E.V., Malofii, M.K., Kolomeichuk, L.V., Murgan, O.K., Vidershpun, A.N., Mukhamatdinova, E.A. & Kuznetsov, V.V. (2018). The priming of potato plants induced by brassinosteroids reduces oxidative stress and increases salt tolerance. In Doklady Biological Sciences (Vol. 478, (1),33-36. Pleiades Publishing. DOI: 10.1134/S0012496618010106
Eleiwa, M. E., Bafeel, S. O. & Ibrahim, S. A. (2011). Influence of brassinosteroids on wheat plant (Triticum aestivum L.) production under salinity stress conditions. I-Growth parameters and photosynthetic pigments. Australian Journal of Basic and Applied Sciences, 5(5), 58-65.
El-Khallal, S. M., Hathout, T. A., Ahsour, A. E. R. A. & Kerrit, A. A. A. (2009). Brassinolide and salicylic acid induced antioxidant enzymes, hormonal balance and protein profile of maize plants grown under salt stress. Research Journal of Agriculture and Biological Sciences, 5(4), 391-402.
Fàbregas, N., Lozano-Elena, F., Blasco-Escámez, D., Tohge, T., Martínez-Andújar, C., Albacete, A., Osorio, S., Bustamante, M., Riechmann, J.L., Nomura, T. & Yokota, T. (2018). Overexpression of the vascular brassinosteroid receptor BRL3 confers drought resistance without penalizing plant growth. Nature communications, 9(1), 1-13. DOI: 10.1038/s41467-018-06861-3
Fadzilla, N. A. M., Finch, R. P. & Burdon, R. H. (1997). Salinity, oxidative stress and antioxidant responses in shoot cultures of rice. Journal of Experimental Botany, 48(2), 325-331. DOI:10.1093/JXB/48.2.325
Fang, Z., Bouwkamp, J. C. & Solomos, T. (1998). Chlorophyllase activities and chlorophyll degradation during leaf senescence in non-yellowing mutant and wild type of Phaseolus vulgaris L. Journal of Experimental Botany, 49(320), 503-510. http://dx.doi.org/10.1093/jxb/49.320.503
Fariduddin, Q., Mir, B. A., Yusuf, M. & Ahmad, A. (2014a). 24-epibrassinolide and/or putrescine trigger physiological and biochemical responses for the salt stress mitigation in Cucumis sativus L. Photosynthetica, 52(3), 464-474. DOI: 10.1007/s11099-014-0052-7
Fariduddin, Q., Yusuf, M., Ahmad, I. & Ahmad, A. (2014b). Brassinosteroids and their role in response of plants to abiotic stresses. Biologia Plantarum, 58(1), 9-17. DOI: 10.1007/s10535-013-0374-5
Foolad, M. R. (2004). Recent advances in genetics of salt tolerance in tomato. Plant Cell, tissue and organ culture, 76(2), 101-119. DOI:10.1023/B:TICU.0000007308.47608.88
Foyer, C. H., Lelandais, M. & Kunert, K. J. (1994). Photooxidative stress in plants.   https://doi.org/10.1111/j.1399-3054.1994.tb03042.x
Fujioka, S. (1999). Brassinosteroids: Steroidal plant hormones.
Fujioka, S., & Sakurai, A. (1997). Brassinosteroids. Natural Product Reports, 14(1), 1-10. DOI: 10.1039/NP9971400001
Gallego-Bartolomé, J., Minguet, E.G., Grau-Enguix, F., Abbas, M., Locascio, A., Thomas, S.G., Alabadí, D. & Blázquez, M.A. (2012). Molecular mechanism for the interaction between gibberellin and brassinosteroid signaling pathways in Arabidopsis. Proceedings of the National Academy of Sciences, 109(33), 13446-13451. DOI: 10.1073/pnas.1119992109
Gampala, S.S., Kim, T.W., He, J.X., Tang, W., Deng, Z., Bai, M.Y., Guan, S., Lalonde, S., Sun, Y., Gendron, J.M. & Chen, H. (2007). An essential role for 14-3-3 proteins in brassinosteroid signal transduction in Arabidopsis. Developmental cell, 13(2), 177-189. DOI: 10.1016/j.devcel.2007.06.009
Goda, H., Shimada, Y., Asami, T., Fujioka, S. & Yoshida, S. (2002). Microarray analysis of brassinosteroid-regulated genes in Arabidopsis. Plant physiology, 130(3), 1319-1334. DOI: 10.1104/pp.011254
Gomes-Filho, E., Lima, C. R. F. M., Costa, J. H., da Silva, A. C. M., da Guia Silva Lima, M., de Lacerda, C. F. & Prisco, J. T. (2008). Cowpea ribonuclease: properties and effect of NaCl-salinity on its activation during seed germination and seedling establishment. Plant Cell Reports, 27(1), 147-157. DOI: 10.1007/s00299-007-0433-5
Greenway, H. & Munns, R. (1980). Mechanisms of salt tolerance in nonhalophytes. Annual review of plant physiology, 31(1), 149-190. https://doi.org/10.1146/annurev.pp.31.060180.001053
Grime, J. P. (1977). Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. The american naturalist, 111(982), 1169-1194. https://doi.org/10.1086/283244
Grove, M.D., Spencer, G.F., Rohwedder, W.K., Mandava, N., Worley, J.F., Warthen, J.D., Steffens, G.L., Flippen-Anderson, J.L. & Cook, J.C. (1979). Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen. Nature, 281(5728), 216-217.
Gruszka, D. (2013). The brassinosteroid signaling pathway—New key players and interconnections with other signaling networks crucial for plant development and stress tolerance. International Journal of Molecular Sciences, 14(5), 8740-8774. DOI: 10.3390/ijms14058740
Hayat, S. & Ahmad, A. (Eds.). (2010). Brassinosteroids: a class of plant hormone. Springer Science & Business Media.
Hayat, S., Ali, B., Hasan, S. A. & Ahmad, A. (2007). Brassinosteroid enhanced the level of antioxidants under cadmium stress in Brassica juncea. Environmental and Experimental Botany, 60(1), 33-41. DOI:10.1016/j.envexpbot.2006.06.002
Hayat, S., Hayat, Q., Alyemeni, M. N., Wani, A. S., Pichtel, J. & Ahmad, A. (2012). Role of proline under changing environments: a review. Plant signaling & behavior, 7(11), 1456-1466. DOI: 10.4161/psb.21949
He, J. X., Gendron, J. M., Sun, Y., Gampala, S. S., Gendron, N., Sun, C. Q. & Wang, Z. Y. (2005). BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses. Science, 307(5715), 1634-1638. DOI: 10.1126/science.1107580
Heyman, J., Cools, T., Vandenbussche, F., Heyndrickx, K.S., Van Leene, J., Vercauteren, I., Vanderauwera, S., Vandepoele, K., De Jaeger, G., Van Der Straeten, D. & De Veylder, L., (2013). ERF115 controls root quiescent center cell division and stem cell replenishment. Science, 342(6160), 860-863. DOI: 10.1126/science.1240667
Holá, D. (2011). Brassinosteroids and photosynthesis. In Brassinosteroids: A class of plant hormone (pp. 143-192). Springer, Dordrecht.
Honnerová, J., Rothová, O., Holá, D., Kočová, M., Kohout, L. & Kvasnica, M. (2010). The exogenous application of brassinosteroids to Zea mays (L.) stressed by long-term chilling does not affect the activities of photosystem 1 or 2. Journal of Plant Growth Regulation, 29(4), 500-505. DOI:10.1007/s00344-010-9153-0
Houimli, S. I. M., Denden, M. & Mouhandes, B. D. (2010). Effects of 24-epibrassinolide on growth, chlorophyll, electrolyte leakage and proline by pepper plants under NaCl-stress. EurAsian Journal of BioSciences, 4. DOI:10.5053/ejobios.2010.4.0.12
Hu, W. H., Yan, X. H., Xiao, Y. A., Zeng, J. J., Qi, H. J., & Ogweno, J. O. (2013a). 24-Epibrassinosteroid alleviate drought-induced inhibition of photosynthesis in Capsicum annuum. Scientia Horticulturae, 150, 232-237. DOI : 10.1016/j.scienta.2012.11.012
Hu, Y. J., Shi, L. X., Sun, W. & Guo, J. X. (2013b). Effects of abscisic acid and brassinolide on photosynthetic characteristics of Leymus chinensis from Songnen Plain grassland in Northeast China. Botanical Studies, 54(1), 1-9. DOI: 10.1186/1999-3110-54-42
Ibrar, M., Jabeen, M., Tabassum, J., Hussain, F. & Ilahi, I. (2003). Salt tolerance potential of Brassica juncea Linn. Journal of Science and Technology (Peshawar), 27(1-2), 79-84.
Jamil, M., Bashir, S., Anwar, S., Bibi, S., Bangash, A., Ullah, F., & Rha, E. S. (2012). Effect of salinity on physiological and biochemical characteristics of different varieties of rice. Pakistan Journal of Botany, 44(1), 7-13.
Jiang, Y. P., Cheng, F., Zhou, Y. H., Xia, X. J., Shi, K. & Yu, J. Q. (2012a). Interactive effects of CO2 enrichment and brassinosteroid on CO2 assimilation and photosynthetic electron transport in Cucumis sativus. Environmental and Experimental Botany, 75, 98-106. DOI: 10.1016/j.envexpbot.2011.09.002
Jiang, Y.P., Cheng, F., Zhou, Y.H., Xia, X.J., Mao, W.H., Shi, K., Chen, Z. & Yu, J.Q. (2012b). Cellular glutathione redox homeostasis plays an important role in the brassinosteroid‐induced increase in CO2 assimilation in Cucumis sativus. New Phytologist, 194(4), 932-943. DOI: 10.1111/j.1469-8137.2012.04111.x
Jiang, Y.P., Cheng, F., Zhou, Y.H., Xia, X.J., Mao, W.H., Shi, K., Chen, Z.X. & Yu, J.Q. (2012c). Hydrogen peroxide functions as a secondary messenger for brassinosteroids-induced CO2 assimilation and carbohydrate metabolism in Cucumis sativus. Journal of Zhejiang University Science B, 13(10), 811-823. DOI: 10.1631/jzus.B1200130
Jin, H., Do, J., Shin, S. J., Choi, J. W., Im Choi, Y., Kim, W. & Kwon, M. (2014). Exogenously applied 24-epi brassinolide reduces lignification and alters cell wall carbohydrate biosynthesis in the secondary xylem of Liriodendron tulipifera. Phytochemistry, 101, 40-51. DOI: 10.1016/j.phytochem.2014.02.003
Jones, G.H. 1996. Plants and microclimate. Cambridge USA. Ed. 2: 72-108.
Kalaji, H. M., Bosa, K., Kościelniak, J. & Żuk-Gołaszewska, K. (2011). Effects of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces. Environmental and Experimental Botany, 73, 64-72.
Kandpal, R. P., Vaidyanathan, C. S., Kumar, M. U., Sastry, K. S. & Rao, N. A. (1981). Alterations in the activities of the enzymes of proline metabolism in Ragi (Eleusine coracana) leaves during water stress. Journal of biosciences, 3(4), 361-370.  http://dx.doi.org/10.1007/BF02702623
Kato, M., & Shimizu, S. (1985). Chlorophyll metabolism in higher plants VI. Involvement of peroxidase in chlorophyll degradation. Plant and cell physiology, 26(7), 1291-1301. https://doi.org/10.1093/oxfordjournals.pcp.a077029
Kaur, H., Sirhindi, G., Bhardwaj, R., Alyemeni, M. N., Siddique, K. H. & Ahmad, P. (2018). 28-homobrassinolide regulates antioxidant enzyme activities and gene expression in response to salt-and temperature-induced oxidative stress in Brassica juncea. Scientific Reports, 8(1), 1-13. DOI: 10.1038/s41598-018-27032-w
Kaveh, H., Nemati, H., Farsi, M. & Jartoodeh, S. V. (2011). How salinity affect germination and emergence of tomato lines. Journal of Biological & Environmental Sciences, 5(15), 159-163.
Ḵẖān, M. A., Khan, M. A. & Weber, D. J. (Eds.). (2006). Ecophysiology of high salinity tolerant plants (Vol. 40). Springer Science & Business Media.
Khan, M. A., Ungar, I. A. & Showalter, A. M. (2000). Effects of salinity on growth, water relations and ion accumulation of the subtropical perennial halophyte, Atriplex griffithii var. stocksii. Annals of Botany, 85(2), 225-232. https://doi.org/10.1006/anbo.1999.1022
Kim, B. H., Kim, S. Y. & Nam, K. H. (2012). Genes encoding plant-specific class III peroxidases are responsible for increased cold tolerance of the brassinosteroid-insensitive 1 mutant. Molecules and cells, 34(6), 539-548. DOI: 10.1007/s10059-012-0230-z
Kulaeva, O. N., Burkhanova, E. A., Fedina, A. B., Khokhlova, V. A., Bokebayeva, G. A., Vorbrodt, H. M. & Adam, G. (1991). Effect of brassinosteroids on protein synthesis and plant-cell ultrastructure under stress conditions. DOI: 10.1021/bk-1991-0474.ch012
Kumar, S., Li, G., Yang, J., Huang, X., Ji, Q., Liu, Z., Ke, W. & Hou, H. (2021). Effect of salt stress on growth, physiological parameters, and ionic concentration of water dropwort (Oenanthe javanica) cultivars. Frontiers in plant science, 12. https://doi.org/10.3389/fpls.2021.660409
Kurth, E., Cramer, G. R., Läuchli, A. & Epstein, E. (1986). Effects of NaCl and CaCl2 on cell enlargement and cell production in cotton roots. Plant Physiology, 82(4), 1102-1106. DOI: 10.1104/pp.82.4.1102
Kutby, A. M., Al-Zahrani, H. S., & Hakeem, K. R. Role of Magnetic Field and Brassinosteroids in Mitigating Salinity Stress in Tomato (Lycopersicon Esculentum L.).
Kutschmar, A., Rzewuski, G., Stührwohldt, N., Beemster, G. T., Inzé, D. & Sauter, M. (2009). PSK‐α promotes root growth in Arabidopsis. New Phytologist, 181(4), 820-831. DOI: 10.1111/j.1469-8137.2008.02710.x
Lewis, O. A. M., Leidi, E. O. & Lips, S. H. (1989). Effect of nitrogen source on growth response to salinity stress in maize and wheat. New Phytologist, 111(2), 155-160. DOI: 10.1111/j.1469-8137.1989.tb00676.x
Li, J. & Nam, K. H. (2002). Regulation of brassinosteroid signaling by a GSK3/SHAGGY-like kinase. Science, 295(5558), 1299-1301. DOI: 10.1126/science.1065769
Li, P. Chen, L., Zhou, Y., Xia, X., Shi, K., Chen, Z., & Yu, J. (2013). Brassinosteroids-induced systemic stress tolerance was associated with increased transcripts of several defence-related genes in the phloem in Cucumis sativus. PLoS One, 8(6), e66582. https://doi.org/10.1371/journal.pone.0066582
Li, Q. F., Wang, C., Jiang, L., Li, S., Sun, S. S. & He, J. X. (2012). An interaction between BZR1 and DELLAs mediates direct signaling crosstalk between brassinosteroids and gibberellins in Arabidopsis. Science signaling, 5(244), ra72-ra72. DOI: 10.1126/scisignal.2002908
Li, X. J., Guo, X., Zhou, Y. H., Shi, K., Zhou, J., Yu, J. Q. & Xia, X. J. (2016). Overexpression of a brassinosteroid biosynthetic gene Dwarf enhances photosynthetic capacity through activation of Calvin cycle enzymes in tomato. BMC plant biology, 16(1), 1-12. DOI:10.1186/s12870-016-0715-6
Lima, J. V. & Lobato, A. K. S. (2017). Brassinosteroids improve photosystem II efficiency, gas exchange, antioxidant enzymes and growth of cowpea plants exposed to water deficit. Physiology and Molecular Biology of Plants, 23(1), 59-72. DOI: 10.1007/s12298-016-0410-y
Lindsey, K., Pullen, M. L. & Topping, J. F. (2003). Importance of plant sterols in pattern formation and hormone signalling. Trends in plant science, 8(11), 521-525. DOI: 10.1016/j.tplants.2003.09.012
Liu, J., Gao, H., Wang, X., Zheng, Q., Wang, C., Wang, X., & Wang, Q. (2014). Effects of 24‐epibrassinolide on plant growth, osmotic regulation and ion homeostasis of salt‐stressed canola. Plant biology, 16(2), 440-450. DOI: 10.1111/plb.12052
Liu, J., Yang, R., Jian, N., Wei, L., Ye, L., Wang, R., Gao, H. & Zheng, Q. (2020). Putrescine metabolism modulates the biphasic effects of brassinosteroids on canola and Arabidopsis salt tolerance. Plant, Cell & Environment, 43(6), 1348-1359. DOI: 10.1111/pce.13757
Liu, J., Zhang, D., Sun, X., Ding, T., Lei, B. & Zhang, C. (2017). Structure-activity relationship of brassinosteroids and their agricultural practical usages. Steroids, 124, 1-17. DOI: 10.1016/j.steroids.2017.05.005
Lu, C. & Vonshak, A. (2002). Effects of salinity stress on photosystem II function in cyanobacterial Spirulina platensis cells. Physiologia plantarum, 114(3), 405-413. DOI: 10.1034/j.1399-3054.2002.1140310.x
Madan, S., Nainawatee, H. S., Jain, R. K. & Chowdhury, J. B. (1995). Proline and proline metabolising enzymes in in-vitro selected NaCl-tolerant Brassica juncea L. under salt stress. Annals of Botany, 76(1), 51-57. https://doi.org/10.1006/anbo.1995.1077
Maibangsa, S., Thangaraj, M., & Stephen, R. (2000). Effect of brassinosteroid and salicylic acid on rice (Oryza sativa L.) grown under low irradiance condtion. Indian Journal of Agricultural Research, 34(4), 258-260.
Mao, J. & Li, J. (2020). Regulation of Three Key Kinases of Brassinosteroid Signaling Pathway. International Journal of Molecular Sciences, 21(12), 4340. https://doi.org/10.3390/ijms21124340
Meriem, B. F., Kaouther, Z., Chérif, H., Tijani, M. & André, B. (2014). Effect of priming on growth, biochemical parameters and mineral composition of different cultivars of coriander (Coriandrum sativum L.) under salt stress. Journal of Stress Physiology & Biochemistry, 10(3), 84-109.
Miller, G. A. D., Suzuki, N., Ciftci‐Yilmaz, S. U. L. T. A. N., & Mittler, R. O. N. (2010). Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, cell & environment, 33(4), 453-467. DOI: 10.1111/j.1365-3040.2009.02041.x
Misra, N. & Gupta, A. K. (2006). Effect of salinity and different nitrogen sources on the activity of antioxidant enzymes and indole alkaloid content in Catharanthus roseus seedlings. Journal of plant physiology, 163(1), 11-18. DOI: 10.1016/j.jplph.2005.02.011
Mittal, S., Kumari, N. & Sharma, V. (2012). Differential response of salt stress on Brassica juncea: photosynthetic performance, pigment, proline, D1 and antioxidant enzymes. Plant Physiology and Biochemistry, 54, 17-26. DOI: 10.1016/j.plaphy.2012.02.003
Mora-García, S., Vert, G., Yin, Y., Caño-Delgado, A., Cheong, H. & Chory, J. (2004). Nuclear protein phosphatases with Kelch-repeat domains modulate the response to brassinosteroids in Arabidopsis. Genes & development, 18(4), 448-460. DOI: 10.1101/gad.1174204
Munns, R. (2005). Genes and salt tolerance: bringing them together. New phytologist, 167(3), 645-663. https://doi.org/10.1111/j.1469-8137.2005.01487.x
Netondo, G. W., Onyango, J. C., & Beck, E. (2004). Sorghum and salinity: II. Gas exchange and chlorophyll fluorescence of sorghum under salt stress. Crop science, 44(3), 806-811. https://doi.org/10.2135/cropsci2004.8060
Nie, W. F., Wang, M. M., Xia, X. J., Zhou, Y. H., Shi, K., Chen, Z. & Yu, J. Q. (2013). Silencing of tomato RBOH1 and MPK2 abolishes brassinosteroid‐induced H2O2 generation and stress tolerance. Plant, Cell & Environment, 36(4), 789-803. DOI: 10.1111/pce.12014
Ogweno, J.O., Song, X.S., Shi, K., Hu, W.H., Mao, W.H., Zhou, Y.H., Yu, J.Q. & Nogués, S. (2008). Brassinosteroids alleviate heat-induced inhibition of photosynthesis by increasing carboxylation efficiency and enhancing antioxidant systems in Lycopersicon esculentum. Journal of Plant Growth Regulation, 27(1), 49-57. DOI:10.1007/s00344-007-9030-7
Otie, V., Udo, I., Shao, Y., Itam, M. O., Okamoto, H., An, P. & Eneji, E. A. (2021). Salinity effects on morpho-physiological and yield traits of soybean (Glycine max L.) as mediated by foliar spray with brassinolide. Plants, 10(3), 541. https://doi.org/10.3390/plants10030541
Özdemir, F., Bor, M., Demiral, T. & Türkan, İ. (2004). Effects of 24-epibrassinolide on seed germination, seedling growth, lipid peroxidation, proline content and antioxidative system of rice (Oryza sativa L.) under salinity stress. Plant growth regulation, 42(3), 203-211. DOI:10.1023/B:GROW.0000026509.25995.13
Parida, A., Das, A. B. & Das, P. (2002). NaCl stress causes changes in photosynthetic pigments, proteins, and other metabolic components in the leaves of a true mangrove, Bruguiera parviflora, in hydroponic cultures. Journal of Plant Biology, 45(1), 28-36. DOI:10.1007/BF03030429
Petretto, G. L., Urgeghe, P. P., Massa, D. & Melito, S. (2019). Effect of salinity (NaCl) on plant growth, nutrient content, and glucosinolate hydrolysis products trends in rocket genotypes. Plant Physiology and Biochemistry, 141, 30-39. DOI: 10.1016/j.plaphy.2019.05.012
Planas-Riverola, A., Gupta, A., Betegón-Putze, I., Bosch, N., Ibañes, M. & Caño-Delgado, A. I. (2019). Brassinosteroid signaling in plant development and adaptation to stress. Development, 146(5), dev151894. DOI: 10.1242/dev.151894
Puvanitha, S. & Mahendran, S. (2017). Effect of salinity on plant height, shoot and root dry weight of selected rice cultivars. Scholars Journal of Agriculture and Veterinary Sciences, 4(4), 126-131. DOI:10.13140/RG.2.2.10540.72322
Qingmao, S., Shiqing, S. & Zhigang, Z. (2006). Exogenous brassinosteroid induced the salt resistance of cucumber (Cucumis sativus L.) seedlings. Scientia Agricultura Sinica.
Rady, M. M. (2011). Effect of 24-epibrassinolide on growth, yield, antioxidant system and cadmium content of bean (Phaseolus vulgaris L.) plants under salinity and cadmium stress. Scientia Horticulturae, 129(2), 232-237. DOI:10.1016/j.scienta.2011.03.035
Rajabi Dehnavi, A., Zahedi, M., Ludwiczak, A., Cardenas Perez, S. & Piernik, A. (2020). Effect of salinity on seed germination and seedling development of sorghum (Sorghum bicolor (L.) Moench) genotypes. Agronomy, 10(6), 859. https://doi.org/10.3390/agronomy10060859
Rajewska, I., Talarek, M. & Bajguz, A. (2016). Brassinosteroids and response of plants to heavy metals action. Frontiers in plant science, 7, 629. https://doi.org/10.3389/fpls.2016.00629
Ramakrishna, B., & Rao, S. (2015). Foliar application of brassinosteroids alleviates adverse effects of zinc toxicity in radish (Raphanus sativus L.) plants. Protoplasma, 252(2), 665-677. DOI: 10.1007/s00709-014-0714-0
Rattan, A., Kapoor, N. & Bhardwaj, R. (2012). Role of brassinosteroids in osmolytes accumulation under salinity stress in Zea mays plants. International Journal of Science and Research, 3(9), 1822-1827.
Rattan, A., Kapoor, D., Kapoor, N., Bhardwaj, R. & Sharma, A. (2020). Brassinosteroids regulate functional components of antioxidative defense system in salt stressed maize seedlings. Journal of Plant Growth Regulation, 39(4), 1465-1475. DOI:10.1007/s00344-020-10097-1
Saha, P., Chatterjee, P. & Biswas, A. K. (2010). NaCl pretreatment alleviates salt stress by enhancement of antioxidant defense system and osmolyte accumulation in mungbean (Vigna radiata L. Wilczek).
Saini, S., Sharma, I. & Pati, P. K. (2015). Versatile roles of brassinosteroid in plants in the context of its homoeostasis, signaling and crosstalks. Frontiers in plant science, 6, 950. https://doi.org/10.3389/fpls.2015.00950
Sairam, R. K. (1994). Effects of homobrassinolide application on plant metabolism and grain yield under irrigated and moisture-stress conditions of two wheat varieties. Plant Growth Regulation, 14(2), 173-181. DOI:10.1007/BF00025220
Santos, C. V. (2004). Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Scientia Horticulturae, 103(1), 93-99. DOI:10.1016/j.scienta.2004.04.009
Sarker, U. & Oba, S. (2020). The response of salinity stress-induced A. tricolor to growth, anatomy, physiology, non-enzymatic and enzymatic antioxidants. Frontiers in Plant Science, 1354. https://doi.org/10.3389/fpls.2020.559876
Shahbaz, M. & Ashraf, M. (2007). Influence of exogenous application of brassinosteroid on growth and mineral nutrients of wheat (Triticum aestivum L.) under saline conditions. Pakistan Journal of Botany, 39(2), 513.
Shahid, M.A., Pervez, M.A., Balal, R.M., Mattson, N.S., Rashid, A., Ahmad, R., Ayyub, C.M. & Abbas, T. (2011). Brassinosteroid (24-epibrassinolide) enhances growth and alleviates the deleterious effects induced by salt stress in pea ('Pisum sativum' L.). Australian Journal of Crop Science, 5(5), 500-510.
Sharma, I., Ching, E., Saini, S., Bhardwaj, R. & Pati, P. K. (2013). Exogenous application of brassinosteroid offers tolerance to salinity by altering stress responses in rice variety Pusa Basmati-1. Plant Physiology and Biochemistry, 69, 17-26. DOI: 10.1016/j.plaphy.2013.04.013
Shrivastava, P. & Kumar, R. (2015). Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences, 22(2), 123-131. https://doi.org/10.1016/j.sjbs.2014.12.001
Shu, S., Tang, Y., Yuan, Y., Sun, J., Zhong, M. & Guo, S. (2016). The role of 24-epibrassinolide in the regulation of photosynthetic characteristics and nitrogen metabolism of tomato seedlings under a combined low temperature and weak light stress. Plant physiology and biochemistry, 107, 344-353. DOI: 10.1016/j.plaphy.2016.06.021
Sibole, J. V., Cabot, C., Poschenrieder, C. & Barceló, J. (2003). Efficient leaf ion partitioning, an overriding condition for abscisic acid‐controlled stomatal and leaf growth responses to NaCl salinization in two legumes. Journal of Experimental Botany, 54(390), 2111-2119. https://doi.org/10.1093/jxb/erg231
Siddiqui, H., Ahmed, K. B. M. & Hayat, S. (2018a). Comparative effect of 28-homobrassinolide and 24-epibrassinolide on the performance of different components influencing the photosynthetic machinery in Brassica juncea L. Plant Physiology and Biochemistry, 129, 198-212. DOI: 10.1016/j.plaphy.2018.05.027
Siddiqui, H., Hayat, S. & Bajguz, A. (2018b). Regulation of photosynthesis by brassinosteroids in plants. Acta Physiologiae Plantarum, 40(3), 1-15. DOI:10.1007/s11738-018-2639-2
Silambarasan, N. & Natarajan, S. (2014). Biochemical responses of Sankankuppi (Clerodendron inerme L.) to salinity stress. African Journal of Agricultural Research, 9(15), 1151-1160. DOI:10.5897/AJAR2013.7629
Singh, S., Jakhar, S., & Rao, S. (2020). Improvement in salt tolerance of Vigna mungo (L.) Hepper by exogenously applied 24-epibrassinolide. Legume Research-An International Journal, 43(5), 647-652. DOI: 10.18805/LR-4019 
Slabu, C., Zörb, C., Steffens, D. & Schubert, S. (2009). Is salt stress of faba bean (Vicia faba) caused by Na+ or Cl–toxicity?. Journal of Plant Nutrition and Soil Science, 172(5), 644-651. https://doi.org/10.1002/jpln.200900052
Soliman, M., Elkelish, A., Souad, T., Alhaithloul, H. & Farooq, M. (2020). Brassinosteroid seed priming with nitrogen supplementation improves salt tolerance in soybean. Physiology and Molecular Biology of Plants, 26(3), 501-511. DOI: 10.1007/s12298-020-00765-7
Sousa, V.Q., Messias, W.F.S., Pereira, Y.C., da Silva, B.R.S., Lobato, E.M.S.G., Alyemeni, M.N., Ahmad, P. & Lobato, A.K.D.S. (2021). Pretreatment with 24-Epibrassinolide Synergistically Protects Root Structures and Chloroplastic Pigments and Upregulates Antioxidant Enzymes and Biomass in Na+-Stressed Tomato Plants. Journal of Plant Growth Regulation, 1-17.
Steffens, F.E. (1991). Relationship between seeding response and environmental variables in Bethlehem, 8th Annual SASAS Conference.
Stepien, P. & Klobus, G. (2005). Antioxidant defense in the leaves of C3 and C4 plants under salinity stress. Physiologia plantarum, 125(1), 31-40. https://doi.org/10.1111/j.1399-3054.2005.00534.x
Su, Q., Zheng, X., Tian, Y. & Wang, C. (2020). Exogenous brassinolide alleviates salt stress in Malus hupehensis Rehd. by regulating the transcription of NHX-Type Na+ (K+)/H+ antiporters. Frontiers in plant science, 11, 38. https://doi.org/10.3389/fpls.2020.00038
Sun, S., Chen, D., Li, X., Qiao, S., Shi, C., Li, C., Shen, H. & Wang, X. (2015). Brassinosteroid signaling regulates leaf erectness in Oryza sativa via the control of a specific U-type cyclin and cell proliferation. Developmental Cell, 34(2), 220-228. https://doi.org/10.1016/j.devcel.2015.05.019
Szabados, L. & Savouré, A. (2010). Proline: a multifunctional amino acid. Trends in plant science, 15(2), 89-97. DOI: 10.1016/j.tplants.2009.11.009
Szabolcs, I. (1974). Salt affected soils in Europe. Martinus Nijhoff. Research Institute for Soil Science and Agricultural Chemistry of the Hungarian Academy of Sciences.
Talaat, N. B. & Shawky, B. T. (2013). 24-Epibrassinolide alleviates salt-induced inhibition of productivity by increasing nutrients and compatible solutes accumulation and enhancing antioxidant system in wheat (Triticum aestivum L.). Acta Physiologiae Plantarum, 35(3), 729-740. DOI:10.1007/s11738-012-1113-9
Tanveer, M., Shahzad, B., Sharma, A., Biju, S. & Bhardwaj, R. (2018). 24-Epibrassinolide; an active brassinolide and its role in salt stress tolerance in plants: a review. Plant Physiology and Biochemistry, 130, 69-79. https://doi.org/10.1016/j.plaphy.2018.06.035
Tavakkoli, E., Fatehi, F., Coventry, S., Rengasamy, P. & McDonald, G. K. (2011). Additive effects of Na+ and Cl–ions on barley growth under salinity stress. Journal of Experimental Botany, 62(6), 2189-2203. https://doi.org/10.1093/jxb/erq422
Tong, H., Xiao, Y., Liu, D., Gao, S., Liu, L., Yin, Y., Jin, Y., Qian, Q. & Chu, C. (2014). Brassinosteroid regulates cell elongation by modulating gibberellin metabolism in rice. The Plant Cell, 26(11), 4376-4393. DOI: 10.1105/tpc.114.132092
Tunc-Ozdemir, M. & Jones, A. M. (2017). BRL3 and AtRGS1 cooperate to fine tune growth inhibition and ROS activation. PloS one, 12(5), e0177400. https://doi.org/10.1371/journal.pone.0177400
Vardhini, B. V. (2011). Studies on the effect of brassinolide on the antioxidative system of two varieties of sorghum grown in saline soils of Karaikal. Asian and Australasian Journal of Plant Science and Biotechnology, 5(1), 31-34.
Vázquez, M. N., Guerrero, Y. R., de la Noval, W. T., Gonzalez, L. M. & Zullo, M. A. T. (2019). Advances on exogenous applications of brassinosteroids and their analogs to enhance plant tolerance to salinity: a review. Australian Journal of Crop Science, 13(1), 115-121. DOI: 10.21475/ajcs.19.13.01.p1404
Vert, G. & Chory, J. (2006). Downstream nuclear events in brassinosteroid signalling. Nature, 441(7089), 96-100. DOI: 10.1038/nature04681
Wang, B., Zhang, J., Xia, X. & Zhang, W. H. (2011). Ameliorative effect of brassinosteroid and ethylene on germination of cucumber seeds in the presence of sodium chloride. Plant Growth Regulation, 65(2), 407-413. DOI:10.1007/s10725-011-9595-9
Wang, W., Vinocur, B. & Altman, A. (2003). Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta, 218(1), 1-14. DOI: 10.1007/s00425-003-1105-5
Wang, X. & Chory, J. (2006). Brassinosteroids regulate dissociation of BKI1, a negative regulator of BRI1 signaling, from the plasma membrane. Science, 313(5790), 1118-1122. DOI: 10.1126/science.1127593
Wang, Z. Y., Seto, H., Fujioka, S., Yoshida, S. & Chory, J. (2001). BRI1 is a critical component of a plasma-membrane receptor for plant steroids. Nature, 410(6826), 380-383. DOI: 10.1038/35066597
Wani, A. S., Ahmad, A., Hayat, S., & Tahir, I. (2019). Epibrassinolide and proline alleviate the photosynthetic and yield inhibition under salt stress by acting on antioxidant system in mustard. Plant physiology and biochemistry, 135, 385-394.
Wei, Z. & Li, J. (2016). Brassinosteroids regulate root growth, development, and symbiosis. Molecular plant, 9(1), 86-100. https://doi.org/10.1016/j.molp.2015.12.003
Widholm, J. M. (1988). In vitro selection with plant cell and tissue cultures: an overview. Iowa state journal of research (USA).
Wu, W., Zhang, Q., Ervin, E., Yang, Z. & Zhang, X. (2017). Physiological mechanism of enhancing salt stress tolerance of perennial ryegrass by 24-epibrassinolide. Frontiers in plant science, 8, 1017. https://doi.org/10.3389/fpls.2017.01017
Xia, X.J., Huang, L.F., Zhou, Y.H., Mao, W.H., Shi, K., Wu, J.X., Asami, T., Chen, Z. & Yu, J.Q. (2009). Brassinosteroids promote photosynthesis and growth by enhancing activation of Rubisco and expression of photosynthetic genes in Cucumis sativus. Planta, 230(6), 1185-1196. DOI: 10.1007/s00425-009-1016-1
Xia, X.J., Huang, L.F., Zhou, Y.H., Mao, W.H., Shi, K., Wu, J.X., Asami, T., Chen, Z. & Yu, J.Q. (2009). Brassinosteroids promote photosynthesis and growth by enhancing activation of Rubisco and expression of photosynthetic genes in Cucumis sativus. Planta, 230(6), 1185-1196.  DOI: 10.1007/s00425-009-1016-1
Xiao-min, L. U. & Wei, Y. A. N. G. (2013). Alleviation effects of brassinolide on cucumber seedlings under NaCl stress. Yingyong Shengtai Xuebao, 24(5).
Xu, S., Hu, B., He, Z., Ma, F., Feng, J., Shen, W. & Yang, J. (2011). Enhancement of salinity tolerance during rice seed germination by presoaking with hemoglobin. International Journal of Molecular Sciences, 12(4), 2488-2501. https://doi.org/10.3390/ijms12042488
Yan, J., Guan, L., Sun, Y., Zhu, Y., Liu, L., Lu, R., Jiang, M., Tan, M. & Zhang, A. (2015). Calcium and ZmCCaMK are involved in brassinosteroid-induced antioxidant defense in maize leaves. Plant and Cell Physiology, 56(5), 883-896. DOI: 10.1093/pcp/pcv014
Yang, H., Matsubayashi, Y., Nakamura, K. & Sakagami, Y. (2001). Diversity of Arabidopsis genes encoding precursors for phytosulfokine, a peptide growth factor. Plant Physiology, 127(3), 842-851. https://doi.org/10.1104/pp.010452
Yang, P., Azher Nawaz, M., Li, F., Bai, L. & Li, J. (2019). Brassinosteroids regulate antioxidant system and protect chloroplast ultrastructure of autotoxicity-stressed cucumber (Cucumis sativus L.) seedlings. Agronomy, 9(5), 265. https://doi.org/10.3390/agronomy9050265
Ye, H., Liu, S., Tang, B., Chen, J., Xie, Z., Nolan, T.M., Jiang, H., Guo, H., Lin, H.Y., Li, L. & Wang, Y. (2017). RD26 mediates crosstalk between drought and brassinosteroid signalling pathways. Nature Communications, 8(1), 1-13. DOI: 10.1038/ncomms14573
Yin, X., Tang, M., Xia, X. & Yu, J. (2021). BRASSINAZOLE RESISTANT 1 Mediates Brassinosteroid-Induced Calvin Cycle to Promote Photosynthesis in Tomato. Frontiers in Plant Science, 12, 811948-811948. https://doi.org/10.3389/fpls.2021.811948
Yin, Y., Vafeados, D., Tao, Y., Yoshida, S., Asami, T. & Chory, J. (2005). A new class of transcription factors mediates brassinosteroid-regulated gene expression in Arabidopsis. Cell, 120(2), 249-259. DOI: 10.1016/j.cell.2004.11.044
Yokota, T., Arima, M. & Takahashi, N. (1982). Castasterone, a new phytosterol with plant-hormone potency, from chestnut insect gall. Tetrahedron Letters, 23(12), 1275-1278. https://doi.org/10.1016/S0040-4039(00)87081-1
Yu, J. Q., Huang, L. F., Hu, W. H., Zhou, Y. H., Mao, W. H., Ye, S. F. & Nogués, S. (2004). A role for brassinosteroids in the regulation of photosynthesis in Cucumis sativus. Journal of experimental botany, 55(399), 1135-1143. DOI: 10.1093/jxb/erh124
Yue, J., Fu, Z., Zhang, L., Zhang, Z. & Zhang, J. (2018). The positive effect of different 24-epiBL pretreatments on salinity tolerance in Robinia pseudoacacia L. seedlings. Forests, 10(1), 4. https://doi.org/10.3390/f10010004
Yue, J., You, Y., Zhang, L., Fu, Z., Wang, J., Zhang, J. & Guy, R. D. (2019). Exogenous 24-epibrassinolide alleviates effects of salt stress on chloroplasts and photosynthesis in Robinia pseudoacacia L. seedlings. Journal of Plant Growth Regulation, 38(2), 669-682.
Yusuf, M., Fariduddin, Q., Khan, T. A. & Hayat, S. (2017). Epibrassinolide reverses the stress generated by combination of excess aluminum and salt in two wheat cultivars through altered proline metabolism and antioxidants. South African journal of botany, 112, 391-398.https://doi.org/10.1016/j.sajb.2017.06.034
Zeng, H., Tang, Q. & Hua, X. (2010). Arabidopsis brassinosteroid mutants det2-1 and bin2-1 display altered salt tolerance. Journal of Plant Growth Regulation, 29(1), 44-52. DOI:10.1007/s00344-009-9111-x
Zhang, A., Zhang, J., Zhang, J., Ye, N., Zhang, H., Tan, M. & Jiang, M. (2011). Nitric oxide mediates brassinosteroid-induced ABA biosynthesis involved in oxidative stress tolerance in maize leaves. Plant and Cell Physiology, 52(1), 181-192. https://doi.org/10.1093/pcp/pcq187
Zhang, S., Hu, J., Zhang, Y., Xie, X. J. & Knapp, A. (2007). Seed priming with brassinolide improves lucerne (Medicago sativa L.) seed germination and seedling growth in relation to physiological changes under salinity stress. Australian Journal of Agricultural Research, 58(8), 811-815. DOI:10.1071/AR06253
Zhu, J. K. (2001). Plant salt tolerance. Trends in plant science, 6(2), 66-71. DOI: 10.1016/s1360-1385(00)018
38-0
Zhu, J. Y., Sae-Seaw, J., & Wang, Z. Y. (2013). Brassinosteroid signalling. Development, 140(8), 1615-1620. https://doi.org/10.1242/dev.060590
Zhu, T., Deng, X., Zhou, X., Zhu, L., Zou, L., Li, P., Zhang, D. and Lin, H., (2016). Ethylene and hydrogen peroxide are involved in brassinosteroid-induced salt tolerance in tomato. Scientific reports, 6(1), 1-15. DOI: 10.1 038/srep35392
Zou, L.J., Deng, X.G., Zhang, L.E., Zhu, T., Tan, W.R., Muhammad, A., Zhu, L.J., Zhang, C., Zhang, D.W. and Lin, H.H. (2018). Nitric oxide as a signaling molecule in brassinosteroid-mediated virus resistance to Cucumber mosaic virus in Arabidopsis thaliana. Physiologia plantarum, 163(2), 196-210.  DOI: 10.1111/ppl.12677
Zurek, D. M., Rayle, D. L., McMorris, T. C., & Clouse, S. D. (1994). Investigation of gene expression, growth kinetics, and wall extensibility during brassinosteroid-regulated stem elongation. Plant Physiology, 104(2), 505-513. DOI: 10.1104/pp.104.2.505
Citation Format
How to Cite
Vikram, Pooja, Sharma, J., & Sharma, A. (2022). Role of Brassinosteroids in plants responses to salinity stress: A review. Journal of Applied and Natural Science, 14(2), 582–599. https://doi.org/10.31018/jans.v14i2.3466
More Citation Formats:
Section
Research Articles