Anita Bhtnagar Sapna Kalra


In the previous two decades, people's lifestyles have changed as a result of industrialization, urbanization, and modernity, resulting in a rise in pollutants in daily sewage wastewater output. Less than half of the sewage generated is processed in a sewage treatment facility, while the remaining gets discharged into rivers untreated, deviating physio-chemical parameters of river water from the standards and thus causing harm to aquatic ecosystems. Sewage water contains autochthonous bacteria such as Pseudomonas fluorescens, Bacillus sp., Acinetobacter sp. and Rhodococcus sp that are effective in decontaminating wastewater. They employ a variety of mechanisms to consume pollutants, including biosorption, bioaccumulation and enzyme-mediated bioremediation, and thus can be used in bioremediation schemes. Bacteria possessing antimicrobial activity as well as protease production can be isolated from the wastewater and employed in the sewage treatment plant. The bacterial consortium has also been shown to be successful in wastewater treatment due to the synergistic degradation capabilities of the co- cultivated bacterial strains, which enhance the uptake rate of pollutants as nutrients. Environmental factors such as temperature, pH, oxygen, and nutrition availability at the site all affect the process outcome. The major focus of this review is to emphasize the bacterial capacity to clean wastewater as a single bacterial culture or as part of a bacterial consortium and the factor affecting the degradation process to achieve the requirement of a safer environment.


Download data is not yet available.


Metrics Loading ...




Antimicrobial, Autochthonous, Bacterial consortium, Biodegradation, Sewage water

Adebayo, F.O. & Obiekezie, S.O. (2018). Microorganisms in waste management. Research Journal of Science and Technology, 10(1), 28-39. https://doi.org/10.5958/2349-2988.2018.00005.0
Ahmed, S.F., Mofijur, M., Nuzhat, S., Chowdhury, A.T., Rafa, N., Uddin, M.A., Inayat, A., Mahlia, T.M.I., Ong, H.C., Chia, W.Y. & Show, P.L. (2021). Recent developments in physical, biological, chemical, and hybrid treatment techniques for removing emerging contaminants from wastewater. Journal of hazardous materials, 416, 125912. https://doi.org/10.1016/j.jhazmat.2021.125912
Ahsan, W.A. & Lin, C. (2021). Characterization of Bacterial Strains Isolated from Wastewater Polluted Soil for Synthetic Dye Decolorization Attributes. In 2021 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS). Page 1-2. https://doi.org/10.1109/ISPACS51563.2021.9651070
Akpor, O.B., Otohinoyi, D.A., Olaolu, D.T. & Aderiye, B.I. (2014). Pollutants in wastewater effluents: impacts and remediation processes. International Journal of Environmental Research and Earth Science, 3(3), 050-059. https://doi.org/10.1016/j.jhazmat.2021.125912
Asagabaldan, M. A., Ayuningrum, D., Kristiana, R., Sabdono, A., Radjasa, O. K. & Trianto, A. (2017). Identification and antibacterial activity of bacteria isolated from marine sponge Haliclona (Reniera) sp. against multi-drug resistant human pathogen. In IOP Conference Series: Earth and Environmental Science, 55(1), 012-019 https://doi:10.1088/1755-1315/55/1/012019
Athar, T., Pandey, A., Khan, M., Saqib, Z.A., Jabeen, M., Shahid, S., Hamurcu, M., Gezgin, S., Rajput, V.D. & Elinson, М.A. (2022). Potential Role of Beneficial Microbes for Sustainable Treatment of Sewage Sludge and Wastewater. In Sustainable Management and Utilization of Sewage Sludge. Page 71-96. Springer, Cham. https://doi:10.1007/978-3-030-85226-9_4
Bai, X., Nie, M., Diwu, Z., Nie, H. & Wang, Y. (2021). Enhanced degradation and mineralization of phenol by combining two highly efficient strains with divergent ring-cleavage pathways. Journal of Water Process Engineering, 39, 101743. https://doi.org/10.1016/j.jwpe.2020.101743
Begum, S., Rath, S.K. & Rath, C.C. (2021). Applications of Microbial Communities for the Remediation of Industrial and Mining Toxic Metal Waste: A Review. Geomicrobiology Journal, Page 1-12. https://doi.org/10.1080/01490451.2021.1991054
Bhandari, S., Poudel, D.K., Marahatha, R., Dawadi, S., Khadayat, K., Phuyal, S., Shrestha, S., Gaire, S., Basnet, K., Khadka, U. & Parajuli, N. (2021). Microbial enzymes used in bioremediation. Journal of Chemistry, 2021. https://doi.org/10.1155/2021/8849512
Bhatnagar, A., Devi, P. & George, M. P. (2016). Impact of mass bathing and religious activities on water quality index of prominent water bodies: a multilocation study in Haryana, India. International journal of ecology, 2016. https://doi.org/10.1155/2016/2915905
Bhatnagar, A., Devi, P. & George, M. P. (2017). Assessment of microbiological characteristics of lentic water bodies with religious activities: a multi-location study in Haryana, India. International Journal of Applied Biology and Pharmaceutical Technology 8(2), 59-67. http://dx.doi.org/10.21276/ijabpt
Bhatt, P., Bhatt, K., Sharma, A., Zhang, W., Mishra, S. & Chen, S. (2021). Biotechnological basis of microbial consortia for the removal of pesticides from the environment. Critical Reviews in Biotechnology, 41(3), 317-338. https://doi.org/10.1080/07388551.2020.1853032
Bilen Ozyurek, S. & Seyis Bilkay, I. (2020). Comparison of petroleum biodegradation efficiencies of three different bacterial consortia determined in petroleum-contaminated waste mud pit. SN Applied Sciences, 2(2), 1-12. https://doi.org/10.1007/s42452-020-2044-5
Bureau of Indian Standards (2020). Analysis of Water and Waste Water, Bureau of Indian Standards, New Delhi.
Briffa, J., Sinagra, E. & Blundell, R. (2020). Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon, 6(9), e04691. https://doi.org/10.1016/j.heliyon.2020.e04691
Chen, Y., Lin, C. J., Jones, G., Fu, S. & Zhan, H. (2009). Enhancing biodegradation of wastewater by microbial consortia with fractional factorial design. Journal of hazardous materials, 171(1-3), 948-953. http://dx.doi.org/10.1016/j.jhazmat.2009.06.100
Chopra, G., Bhatnagar, A. & Kumar, D. (2021). Water Quality Index of Kali Bein – A Tributary of the River Beas in Punjab, India. Annals of Biology 37(1), 93-99.
Central Pollution Control Board (2021). Air quality monitoring, emission inventory and source apportionment study for Indian cities: national summary report. Central Pollution Control Board (CPCB), New Delhi
Cui, Q., Huang, Y., Wang, H. & Fang, T. (2019). Diversity and abundance of bacterial pathogens in urban rivers impacted by domestic sewage. Environmental pollution, 249, 24-35. https://doi.org/10.1016/j.envpol.2019.02.094
Dadrasnia, A., Usman, M.M., Lim, K.T., Velappan, R.D., Shahsavari, N., Vejan, P., Mahmud, A.F. & Ismail, S, (2017). Microbial Aspects in Wastewater Treatment–A Technical. Environmental Pollution and Protection, 2(2), 75-84. http://dx.doi.org/10.22606/epp.2017.22005
Das, N. & Chandran, P. (2011). Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnology research international, 2011.https://doi.org/10.4061/2011/941810
Devi, P., Bhtnagar, A. & George, M. P. (2019). Evaluation of mass bathing effects on water quality status of eight prominent ponds of Haryana (India): A multi-location study. Journal of Applied and Natural Science, 11(2), 361-371. http://dx.doi.org/10.31018/jans.v11i2.2044
Dhall, P., Kumar, R. & Kumar, A. (2012). Biodegradation of sewage wastewater using autochthonous bacteria. The Scientific World Journal, 2012. https://doi.org/10.1100/2012/861903
ENVIS (2021). Environmental Information System (ENVIS), Ministry of Environment, Forest and Climate Change, Government of India. Available at http://envis.nic.in
Ethica, S.N., Muchlissin, S.I., Saptaningtyas, R.A.G.I.L. & Sabdono, A.G.U.S. (2018). Protease producers predominate cultivable hydrolytic bacteria isolated from liquid biomedical waste. Asian Journal of Chemistry, 30(9), 2035-2038.
Feng, S., Gong, L., Zhang, Y., Tong, Y., Zhang, H., Zhu, D., Huang, X. & Yang, H. (2021). Bioaugmentation potential evaluation of a bacterial consortium composed of isolated Pseudomonas and Rhodococcus for degrading benzene, toluene and styrene in sludge and sewage. Bioresource Technology, 320, 124329. https://doi.org/10.1016/j.biortech.2020.124329
Forgacs, E., Cserhati, T. & Oros, G. (2004). Removal of synthetic dyes from wastewaters: a review. Environment international, 30(7), 953-971. https://doi.org/10.1016/j.envint.2004.02.001
Gerba, C. P. & Smith, J. E. (2005). Sources of pathogenic microorganisms and their fate during land application of wastes. Journal of environmental quality, 34(1), 42-48. https://doi.org/10.2134/jeq2005.0042a
Ghosh, S., Chowdhury, R. & Bhattacharya, P. (2016). Mixed consortia in bioprocesses: role of microbial interactions. Applied microbiology and biotechnology, 100(10), 4283-4295. https://doi.org/10.1007/s00253-016-7448-1
Gupta, A. & Thakur, I. S. (2015). Biodegradation of wastewater organic contaminants using Serratia sp. ISTVKR1 isolated from sewage sludge. Biochemical Engineering Journal, 102, 115-124. http://dx.doi.org/10.1016/j.bej.2015.02.007
Hanif, M.A., Miah, R., Islam, M.A. & Marzia, S. (2020). Impact of Kapotaksha river water pollution on human health and environment. Progressive Agriculture, 31(1), 1-9. https://doi.org/10.3329/pa.v31i1.48300
Hesnawi, R., Dahmani, K., Al-Swayah, A., Mohamed, S. & Mohammed, S. A. (2014). Biodegradation of municipal wastewater with local and commercial bacteria. Procedia Engineering, 70, 810-814. https://doi.org/10.1016/j.proeng.2014.02.088
Hosseini, F., Malekzadeh, F., Amirmozafari, N. & Ghaemi, N. (2007). Biodegradation of anionic surfactants by isolated bacteria from activated sludge. International Journal of Environmental Science & Technology, 4(1), 127-132. http://dx.doi.org/10.1007/BF03325970
Ibrahim, S., El-Liethy, M. A., Elwakeel, K. Z., Hasan, M. A. E. G., Al Zanaty, A. M. & Kamel, M. M. (2020). Role of identified bacterial consortium in treatment of Quhafa Wastewater Treatment Plant influent in Fayuom, Egypt. Environmental monitoring and assessment, 192(3), 1-10. https://link.springer.com/article/10.1007%2Fs10661-020-8105-9
IIdi, A., Nor, M. H. M., Wahab, M. F. A. & Ibrahim, Z. (2015). Photosynthetic bacteria: an eco-friendly and cheap tool for bioremediation. Reviews in Environmental Science and Bio/Technology, 14(2), 271-285. http://dx.doi.org/10.1007/s11157-014-9355-1
IIgiri, B. E., Okoduwa, S. I., Idoko, G. O., Akabuogu, E. P., Adeyi, A. O. & Ejiogu, I. K. (2018). Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: a review. Journal of toxicology. https://doi.org/10.1155/2018/2568038
Jariyal, M., Yadav, M., Singh, N.K., Yadav, S., Sharma, I., Dahiya, S. & Thanki, A. (2020). Microbial remediation progress and future prospects. In Bioremediation of pollutants. Page 187-214. Elsevier. https://doi.org/10.1016/B978-0-12-819025-8.00008-9
Josephine, F. S., Ramya, V. S., Devi, N., Ganapa, S. B., Siddalingeshwara, K. G., Venugopal, N. & Vishwanatha, T. (2012). Isolation, production and characterization of protease from Bacillus sp. isolated from soil sample. J Microbiol Biotech Res, 2(1), 163-168.
Kafilzadeh, F., Sahragard, P., Jamali, H., & Tahery, Y. (2011). Isolation and identification of hydrocarbons degrading bacteria in soil around Shiraz Refinery. African Journal of Microbiology Research, 5(19), 3084-3089. http://dx.doi.org/10.5897/AJMR11.195
Kalgapurkar, G. A. D. A. (2018). Control Indian Standards Institute of Major Pollutants In River By Bioremediation: A Case Study-River Mutha-Pune.
Kanade, S. N., Ade, A. B. & Khilare, V. C. (2012). Malathion degradation by Azospirillum lipoferum Beijerinck. Sci. Res. Reporter, 2(1), 94-103.
Karigar, C. S. & Rao, S. S. (2011). Role of microbial enzymes in the bioremediation of pollutants: a review. Enzyme research, 2011. https://doi.org/10.4061/2011/805187
Kaur, R., Wani, S. P., Singh, A. K. & Lal, K. (2012, May). Wastewater production, treatment and use in India. In National Report presented at the 2nd regional workshop on Safe Use of Wastewater in Agriculture. Page 1-13.
Khalid, F., Hashmi, M.Z., Jamil, N., Qadir, A. & Ali, M.I. (2021). Microbial and enzymatic degradation of PCBs from e-waste-contaminated sites: a review. Environmental Science and Pollution Research, 28(9), 10474-10487. https://doi.org/10.1007/s11356-020-11996-2
Khan, M. W. A. & Ahmad, M. (2006). Detoxification and bioremediation potential of a Pseudomonas fluorescens isolate against the major Indian water pollutants. Journal of Environmental Science and Health, Part A, 41(4), 659-674. http://dx.doi.org/10.1080/10934520600575051
Krishnaswamy, U., Muthusamy, M. & Perumalsamy, L. (2009). Studies on the efficiency of the removal of phosphate using bacterial consortium for the biotreatment of phosphate wastewater. Eur. J. Appl. Sci, 1(1), 6-15.
Kumar, B. R., Prasad, M. L., Srinivasarao, D. & Rao, K. S. (2013). Bioremediation of sewage using specific consortium of microorganisms. International Journal of Research in Applied, 1(6), 15-26.
Lee, D.W., Lee, H., Kwon, B.O., Khim, J.S., Yim, U.H., Kim, B.S. & Kim, J.J. (2018). Biosurfactant-assisted bioremediation of crude oil by indigenous bacteria isolated from Taean beach sediment. Environmental pollution, 241, 254-264. https://doi.org/10.1016/j.envpol.2018.05.070
Lellis, B., Fávaro-Polonio, C. Z., Pamphile, J. A. & Polonio, J. C. (2019). Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnology Research and Innovation, 3(2), 275-290. https://doi.org/10.1016/j.biori.2019.09.001
Li, R., Wang, J., & Li, H. (2018). Isolation and characterization of organic matter-degrading bacteria from coking wastewater treatment plant. Water Science and Technology, 78(7), 1517-1524. http://dx.doi.org/10.2166/wst.2018.427
Luka, Y., Highina, B.K. & Zubairu, A. (2018). Bioremediation: A solution to environmental pollution-a review. Am J Eng Res, 7(2), 101-109.
Ma, J., Xu, L. & Jia, L. (2012). Degradation of polycyclic aromatic hydrocarbons by Pseudomonas sp. JM2 isolated from active sewage sludge of chemical plant. Journal of Environmental Sciences, 24(12), 2141-2148. http://dx.doi.org/10.1016/S1001-0742(11)61064-4
Madukasi, E. I., Chunhua, H. & Zhang, G. (2011). Isolation and application of a wild strain photosynthetic bacterium to environmental waste management. International Journal of Environmental Science & Technology, 8(3), 513-522. http://dx.doi.org/10.1007/BF03326237
Maji, S., Dwivedi, D.H., Singh, N., Kishor, S. & Gond, M. (2020). Agricultural waste: Its impact on environment and management approaches. In Emerging Eco-friendly Green Technologies for Wastewater Treatment. Page 329-351. Springer, Singapore. http://dx.doi.org/10.1007/978-981-15-1390-9_15
Manasa, R.L. & Mehta, A. (2020). Wastewater: sources of pollutants and its remediation. In Environmental Biotechnology, 2, 197-219. Springer, Cham. http://dx.doi.org/10.1007/978-3-030-38196-7_9
Matta, G. (2014). A study on physico-chemical Characteristics to assess the pollution status of river Ganga in Uttarakhand. Journal of Chemical and Pharmaceutical Sciences, 7(3), 210-217.
Mbachu, A.E., Chukwura, E.I. & Mbachu, N.A. (2020). Role of Microorganisms in the Degradation of Organic Pollutants: A Review. Energy and Environmental Engineering, 7(1), 1-11. http://dx.doi.org/10.13189/eee.2020.070101
Medhi, K., Gupta, A. & Takur, S.I. (2019). Biological nitrogen removal from wastewater by Paracoccus denitrificans ISTOD1: optimization of process parameters using response surface methodology. J. Energy Environ. Sustain, 5, 41-48.
Meerbergen, K., Van Geel, M., Waud, M., Willems, K. A., Dewil, R., Van Impe, J., ... & Lievens, B. (2017). Assessing the composition of microbial communities in textile wastewater treatment plants in comparison with municipal wastewater treatment plants. MicrobiologyOpen, 6(1), e00413. http://dx.doi.org/10.1002/mbo3.413
Mongkolthanaruk, W. & Dharmsthiti, S. (2002). Biodegradation of lipid-rich wastewater by a mixed bacterial consortium. International Biodeterioration & Biodegradation, 50(2), 101-105. http://dx.doi.org/10.1016/S0964-8305(02)00057-4
Monica, S., Karthik, L., Mythili, S. & Sathiavelu, A. (2011). Formulation of effective microbial consortia and its application for sewage treatment. J Microbial Biochem Technol, 3, 051-055. http://dx.doi.org/10.4172/1948-5948.1000051
Nadeem, H., Alia, K.B., Muneer, F., Rasul, I., Siddique, M.H., Azeem, F. & Zubair, M. (2021). Isolation and identification of low-density polyethylene degrading novel bacterial strains. Archives of Microbiology, 203(9), 5417-5423.
Naik, M. G. & Duraphe, M. D. (2012). Review paper on-Parameters affecting bioremediation. International journal of life science and pharma research, 2(3), L77-L80.
Nanda, M., Kumar, V. & Sharma, D.K. (2019). Multimetal tolerance mechanisms in bacteria: The resistance strategies acquired by bacteria that can be exploited to ‘clean-up’heavy metal contaminants from water. Aquatic toxicology, 212, 1-10. https://doi.org/10.1016/j.aquatox.2019.04.011
Niu, J. & Li, X. (2022). Effects of Microbial Inoculation with Different Indigenous Bacillus Species on Physicochemical Characteristics and Bacterial Succession during Short-Term Composting. Fermentation, 8(4), 152.
Paisio, C. E., Quevedo, M. R., Talano, M. A., González, P. S. & Agostini, E. (2014). Application of two bacterial strains for wastewater bioremediation and assessment of phenolics biodegradation. Environmental Technology, 35(14), 1802-1810. http://dx.doi.org/10.1080/09593330.2014.882994
Patel, A., Arkatkar, A., Singh, S., Rabbani, A., Medina, J.D.S., Ong, E.S., Habashy, M.M., Jadhav, D.A., Rene, E.R., Mungray, A.A. & Mungray, A.K. (2021). Physico-chemical and biological treatment strategies for converting municipal wastewater and its residue to resources. Chemosphere, 282, 130881. https://doi.org/10.1016/j.chemosphere.2021.130881
Pindihama, G. K., Gumbo, J. R. & Oberholster, P. J. (2011). Evaluation of a low cost technology to manage algal toxins in rural water supplies. http://dx.doi.org/10.5897/AJBX11.024
Rajakumar, S., Ayyasamy, P. M., Shanthi, K., Thavamani, P., Velmurugan, P., Song, Y. C. & Lakshmanaperumalsamy, P. (2008). Nitrate removal efficiency of bacterial consortium (Pseudomonas sp. KW1 and Bacillus sp. YW4) in synthetic nitrate-rich water. Journal of hazardous materials, 157(2-3), 553-563. http://dx.doi.org/10.1016/j.jhazmat.2008.01.020
Rajeshkumar, S. & Li, X. (2018). Bioaccumulation of heavy metals in fish species from the Meiliang Bay, Taihu Lake, China. Toxicology Reports, 5, 288-295. https://doi.org/10.1016/j.toxrep.2018.01.007
Raper, E., Stephenson, T., Anderson, D.R., Fisher, R. & Soares, A. (2018). Industrial wastewater treatment through bioaugmentation. Process Safety and Environmental Protection, 118, 178-187. https://doi.org/10.1016/j.psep.2018.06.035
Saha, A. & Santra, S. C. (2014). Isolation and characterization of bacteria isolated from municipal solid waste for production of industrial enzymes and waste degradation. J Microbiol Exp, 1(1), 1-8. https://doi.org/10.15406/jmen.2014.01.00003
Saha, A. (2014). Physico-chemical properties in relation to water quality at different locations along the Shutanga river, life-line of Mathabhanga subdivision town of Coochbehar district, West Bengal, India. International Journal of Pharmaceutics and Drug Analysis, Page 510-519.
Samer, M. (2015). Biological and chemical wastewater treatment processes. Wastewater TreatmentEengineering, 150. http://dx.doi.org/10.5772/61250
Santos, C. & dos Reis Martinez, C.B. (2021). Multixenobiotic resistance mechanism: Organ-specific characteristics in the fish Prochilodus lineatus and its role as a protection against genotoxic agents. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 243, 108996.
Saxena, A., Gupta, V. & Saxena, S. (2020). Bioremediation: A green approach towards towards the treatment of sewage waste. J. Phytol. Res, 33(2), 171- 187
Seanego, K. G. & Moyo, N. A. G. (2013). The effect of sewage effluent on the physico-chemical and biological characteristics of the Sand River, Limpopo, South Africa. Physics and Chemistry of the Earth, Parts A/B/C, 66, 75-82. http://dx.doi.org/10.1016/j.pce.2013.08.008
Seeger, M., Hernández, M., Méndez, V., Ponce, B., Córdova, M. & González, M. (2010). Bacterial degradation and bioremediation of chlorinated herbicides and biphenyls. Journal of Soil Science and Plant Nutrition, 10(3), 320-332. http://dx.doi.org/10.4067/S0718-95162010000100007
Shishir, T.A., Mahbub, N. & Kamal, N.E. (2019). Review on bioremediation: a tool to resurrect the polluted rivers. Pollution, 5(3), 555-568. https://dx.doi.org/10.22059/poll.2019.272339.558
Shrestha, R., Ban, S., Devkota, S., Sharma, S., Joshi, R., Tiwari, A.P., Kim, H.Y. & Joshi, M.K. (2021). Technological trends in heavy metals removal from industrial wastewater: A review. Journal of Environmental Chemical Engineering, 9(4), 105688. https://doi.org/10.1016/j.jece.2021.105688
Shruthi, S., Raghavendra, M. P., Swarna Smitha, H. S. & Girish, K. (2012). Bioremediation of rubber processing industry effluent by Pseudomonas sp. International Journal of Research in Environmental Science and Technology, 2(2), 27-30.
Sihag, S., Pathak, H. & Jaroli, D. P. (2014). Factors affecting the rate of biodegradation of polyaromatic hydrocarbons. International Journal of Pure & Applied Bioscience, 2(3), 185-202.
Silver, S. (1996). Bacterial resistances to toxic metal ions-a review. Gene, 179(1), 9-19. https://doi.org/10.1016/s0378-1119(96)00323-x
Singh, J., Yadav, P., Pal, A.K. & Mishra, V. (2020). Water pollutants: Origin and status. In: Sensors in water pollutants monitoring: Role of material. Page 5-20. Springer, Singapore.
Sinha, S. N. & Paul, D. (2014). Biodegradation potential of some bacterial strains isolated from sewage water. International Journal of Environmental Biology, 4(2), 107-111.
Swenson, J. M., Killgore, G. E. & Tenover, F. C. (2004). Antimicrobial susceptibility testing of Acinetobacter spp. by NCCLS broth microdilution and disk diffusion methods. Journal of Clinical Microbiology, 42(11), 5102-5108. https://doi.org/10.1128/jcm.42.11.5102-5108.2004
Tijani, J. O., Fatoba, O. O., Babajide, O. O. & Petrik, L. F. (2016). Pharmaceuticals, endocrine disruptors, personal care products, nanomaterials and perfluorinated pollutants: a review. Environmental Chemistry Letters, 14(1), 27-49 http://dx.doi.org/10.1007/s10311-015-0537-z
Tripathi, G., Husain, A., Ahmad, S., Hasan, Z. & Farooqui, A. (2021). Contamination of water resources in industrial zones. In Contamination of Water, Page 85-98. Academic Press. https://doi.org/10.1016/B978-0-12-824058-8.00017-7
Uma, V. & Gandhimathi, R. (2019). Organic removal and synthesis of biopolymer from synthetic oily bilge water using the novel mixed bacterial consortium. Bioresource technology, 273, 169-176. https://doi.org/10.1016/j.biortech.2018.11.003
Vashishth, A., Tehri, N. & Kumar, P. (2019). The potential of naturally occurring bacteria for the bioremediation of toxic metals pollution. Brazilian Journal of Biological Sciences, 6(12), 39-51.http://dx.doi.org/10.21472/bjbs.061205
Vaz S. Silva, S., Dias, A.H.C., Dutra, E.S., Pavanin, A.L., Morelli, S. & Pereira, B.B. (2016). The impact of water pollution on fish species in southeast region of Goiás, Brazil. Journal of Toxicology and Environmental Health, Part A, 79(1), 8-16. https://doi.org/10.1080/15287394.2015.1099484
Velusamy, K. & Kannan, J. (2016). Seasonal variation in physico-chemical and microbiological characteristics of sewage water from sewage treatment plants. Current World Environment, 11(3), 791. http://dx.doi.org/10.12944/CWE.11.3.14
Venkatesh, K. R., Rajendran, M. & Murugappan, A. (2009). A correlation study on physico-chemical characteristics of domestic sewage. Nat. Environ. Poll. Tech, 8(2), 141-145.
Vijayaraghavan, K. & Yun, Y. S. (2008). Bacterial biosorbents and biosorption. Biotechnology advances, 26(3), 266-291. https://doi.org/10.1016/j.biotechadv.2008.02.002
World Health Organisation (2006). Guidelines for the Safe Use of Wastewater, Excreta and Greater. Vol. 3. World Health Organisation Press, Geneva, Switzerland.
Woldeamanuale, T.B. (2017). Study on Physico-Chemical Parameters of Waste Water Effluents from Kombolcha and Debreberhan Industrial Area, Ethiopia. International Journal of Rural Development Environment and Health Research, 1(2).
Xiang, Y., Xing, Z., Liu, J., Qin, W. & Huang, X. (2020). Recent advances in the biodegradation of polychlorinated biphenyls. World Journal of Microbiology and Biotechnology, 36(10), 1-10. https://doi.org/10.1007/s11274-020-02922-2
Yadav, M., Singh, G. & Jadeja, R.N. (2021). Physical and Chemical Methods for Heavy Metal Removal. Pollutants and Water Management: Resources, Strategies and Scarcity, Page 377-397.
Zeng, W., Li, F., Wu, C., Yu, R., Wu, X., Shen, L., Liu, Y., Qiu, G. & Li, J. (2020). Role of extracellular polymeric substance (EPS) in toxicity response of soil bacteria Bacillus sp. S3 to multiple heavy metals. Bioprocess and Biosystems Engineering, 43(1), 153-167. https://doi.org/10.1007/s00449-019-02213-7
Zhang, X. Y., Han, X. X., Chen, X. L., Dang, H. Y., Xie, B. B., Qin, Q. L., ... & Zhang, Y. Z. (2015). Diversity of cultivable protease-producing bacteria in sediments of Jiaozhou Bay, China. Frontiers in Microbiology, 6, 1021.https://doi.org/10.3389/fmicb.2015.01021
Zhang, X., Li, X., Zhang, Q., Peng, Q., Zhang, W. & Gao, F. (2014). New insight into the biological treatment by activated sludge: the role of adsorption process. Bioresource Technology, 153, 160-164. https://doi.org/10.1016/j.biortech.2013.11.084
Zhang, X., Luo, Y. and Goh, K.S. (2018). Modeling spray drift and runoff-related inputs of pesticides to receiving water. Environmental Pollution, 234, 48-58. https://doi.org/10.1016/j.envpol.2017.11.032
Citation Format
How to Cite
Bhtnagar, A., & Kalra, S. (2022). Autochthonous antimicrobial microorganisms: application in wastewater treatment. Journal of Applied and Natural Science, 14(2), 660–676. https://doi.org/10.31018/jans.v14i2.3462
More Citation Formats:
Research Articles