##plugins.themes.bootstrap3.article.main##

Jatin Kumar Amit K. Das Jyoti Rani Piyush Kumar Gupta

Abstract

Simarouba amara Aubl., commonly known as paradise tree, is a multipurpose, evergreen, poly-gamodioecious, and oil yielding tree. The plant is famous for its seeds containing 55-65% oil, a potent source of biodiesel production and is being utilized in cosmetics, pharmaceuticals, and other industries. The study aimed to evaluate the physiological and biochemical changes that occur in S. amara seedlings under heavy metals stress. Two-month-old S. amara seedlings were exposed to different concentrations of zinc (Zn) and copper (Cu) (Zn and Cu: 10 mg Kg-1, 50 mg Kg-1, 100 mg Kg-1, 200 mg Kg-1). The study indicated that both the heavy metals resulted in a significant decrease in leaf relative water content (LRWC), photosynthetic pigments and an increase in lipid peroxidation and antioxidant levels. Regarding lipid peroxidation, Cu proved to be more toxic to seedlings compared to Zn. However, in terms of LRWC and photosynthetic pigments, Zn showed higher toxic effects than Cu. Proline and cysteine content increased by 234% and 270%, respectively, due to Zn stress and 117% and 102%, respectively, due to Cu stress at 200 mg Kg-1. Among antioxidant enzymes, a maximum increase in glutathione reductase (GR) activity was observed (600% due to Cu stress and 320% due to Zn stress) at 200 mg Kg-1. At the same concentration, a minimum increase was seen in glutathione peroxidase (GPX) activity (60% under Cu stress) and catalase (CAT) activity (69% under Zn stress). The present study revealed that S. amara has a better antioxidant defensive mechanism against oxidative stress and can be used for its large scale cultivation on wastelands.

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Simarouba amara, Antioxidants, Wastelands, Lipid peroxidation

References
Adem, G. D., Roy, S. J., Zhou, M., Bowman, J. P. & Shabala, S. (2014). Evaluating contribution of ionic, osmotic and oxidative stress components towards salinity tolerance in barley. BMC Plant Biology, 14(1), 113. https://doi.org/10.1186/1471-2229-14-113
Aebi, H. (1984). Catalase in vitro. Methods in Enzymology, 105, 121-126, Academic press. https://doi.org/10.10 16/S0076-6879(84)05016-3
Arnon, D. I. (1949). Copper enzymes isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24(1), 1-15. https://doi.org/10.1104/pp.24.1.1
Ashraf, M. & Harris, P. J. C. (2013). Photosynthesis under stressful environments: an overview. Photosynthetica, 51(2), 163-190. https://doi.org/10.1007/s11099-013-0021-6
Awate, P. D. & Gaikwad, D. K. (2014). Influence of growth regulators on secondary metabolites of medicinally important oil yielding plant Simarouba glauca DC. under water stress conditions. Journal of Stress Physiology and Biochemistry, 10(1), 222–229.
Azooz, M. M., Abou-Elhamd, M. F. & Al-Fredan, M. A. (2012). Biphasic effect of copper on growth, proline, lipid peroxidation and antioxidant enzyme activities of wheat (Triticum aestivum cv. Hasaawi) at early growing stage. Australian Journal of Crop Science, 6(4), 688-694.
Badoni. P., Kumari, M., Patade, V. Y., Grover, A. & Nasim, M. (2016). Biochemical and physiological analysis of zinc tolerance in Jatropha curcas. Journal of Experimental Biology and Agricultural Sciences, 4(1), 7-15. http://dx.doi.org/10.18006/2015.4(1).07.15
Barcelo, J. & Poschenrieder, C. (1990). Plant water relations as affected by heavy metal stress: a review. Journal of Plant Nutrition, 13(1), 1-37. https://doi.org/10.1080/01904169009364057
Bates, L. S., Waldren, R. P. & Teare, I. D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39(1), 205-207. https://doi.org/10.1007/BF00018060
Beyer, W. F. & Fridovich, I. (1987). Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Analytical Biochemistry, 161(2), 559-566. https://doi.org/10.1016/0003-2697(87)90489-1
Bhattacharyya, N. (2022). Naturally Growing Native Plants of Wastelands: Their Stress Management Strategies and Prospects in Changing Climate. In Plant Stress: Challenges and Management in the New Decade Springer, Cham, pp. 149-168. https://doi.org/10.1007/978-3-030-95365-2_10
Bortoloti, G. A. & Baron, D. (2022). Phytoremediation of toxic heavy metals by Brassica plants: A biochemical and physiological approach. Environmental Advances, 8: 100204. https://doi.org/10.1016/j.envadv.2022.100204
Bouazizi, H., Jouili, H., Geitmann, A. & ElFerjani, E. (2010). Copper toxicity in expanding leaves of Phaseolus vulgaris L.: antioxidant enzyme response and nutrient element uptake. Ecotoxicology and Environmental Safety, 73(6), 1304-1308. https://doi.org/10.1016/j.ecoenv.2010.05.014
Bowler, C., Van Camp, W., Van Montague, M., Inze, D. & Asada, K. (1994). Superoxide dismutase in plants. Critical Reviews Plant Sciences, 13(3), 199-218. https://doi.org/10.1080/07352689409701914
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
Cambrolle, J., Mancilla-Leyton, J. M., Munoz-Valles, S., Luque, T. & Fiqueroa, M. E. (2012). Zinc tolerance and accumulation in the salt-marsh shrub Halimioneportulacoides. Chemosphere, 86(9), 867-874. https://doi.org/10.1016/j.chemosphere.2011.10.039
Cavalcanti, F. R., Lima, J. P. M. S., Ferreira-Silva, S. L., Viegas, R. S. & Silveira, J. A. G. (2007). Roots and leaves display contrasting oxidative response during salt stress and recovery in cowpea. Journalof Plant Physiology, 164(5), 591-600. https://doi.org/10.1016/j.jplph.2006.03.004
Chaney, R. L., Broadhurst, C. L., & Centofanti, T. (2010). Phytoremediation of soil trace elements, in Trace Elements in Soils, ed. P. S. Hooda (Chichester: John Wiley & Sons, Inc.), pp. 311–352. doi:10.1002/9781444319477
Chen, J., Shafi, M., Song, Li., Wang, Y., Wu, J., Ye, Z., Peng, D., Yan, W. & Liu, D. (2015). Copper induced oxidative stresses, antioxidant responses and phytoremediation potential of Moso bamboo (Phyllostachys pubescens). Scientific Reports, 5:13554. https://doi.org/10.1038/srep13 554
D’souza, R.M. & Devaraj, V. R. (2012). Induction of oxidative stress and antioxidative mechanisms in hyacinth bean under zinc stress. African Crop Science Journal, 20(1), 17-29.
DalCorso, G., Fasani, E., Manara, A., Visioli, G. & Furini, A. (2019). Heavy metal pollutions: state of the art and innovation in phytoremediation. International Journal of Molecular. Science, 20(14): 3412. doi: 10.3390/ijms20143412
Demirevska-Kepova, K., Simova-Stoilova, L., Stoyanova, Z., Holzer, R. & Feller, U. (2004). Biochemical changes in barley plants after excessive supply of copper and manganese. Environmental and Experimental Botany, 52(3), 253-266. https://doi.org/10.1016/j.envexpbot.2004.02.004
Dey, S., Mazumder, P. B. & Paul, S. B. (2015). Copper induced changes in growth and antioxidative mechanisms of tea plant (Camellia sinensis (L.) O. Kuntze). African Journal of Biotechnology, 14(7), 582-592. DOI: 10.5897/AJB2014.14279
Fediuc, E., Lips, S. H. & Erdei, L. (2005). O-acetylserine (thiol) lyase activity in Phragmites and Typha plants under cadmium and NaCl stress conditions and the involvement of ABA in the stress response. Journal of Plant Physiology, 162(8), 865-872. https://doi.org/10.1016/j.jplph.2 004.11.015
Fidalgo, F., Azenha, M., Silva, A. F., de Sousa, A., Santiago, A., Ferraz, P. & Teixeira, J. (2013). Copper-induced stress in Solanum nigrum L. and antioxidant defense system responses. Food and Energy Security 2(1), 70-80. https://doi.org/10.1002/fes3.20
Gaitonde, M. K. (1967). A spectrophotometric method for the direct determination of cysteine in the presence of other naturally occurring amino acids. Biochemical Journal, 104(2), 627-633. doi: 10.1042/bj1040627
Hansch, R. & Mendel, R. R. (2009). Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Current Opinon in Plant Biology, 12(3), 259-266. https://doi.org/10.1016/j.pbi.2009.05.006
Heath, R. L. & Packer. L. (1968). Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125(1), 189-198. https://doi.org/10.1016/0003-9861(68)90654-1
Hejazi-Mehrizi, M., Shariatmadari, H., Khoshgoftarmanesh, A. H. & Dehghani, F. (2012). Copper effects on growth, lipid peroxidation, and total phenolic content of Rosemary leaves under salinity stress. Journal of Agricultural Science and Technology, 14(1), 205-212.
Herzig, R., Nehnevajova, E., Pfistner, C., Schwitzguebel, J.P., Ricci, A. & Keller, C. (2014). Feasibility of labile Zn phytoextraction using enhanced tobacco and sunflower: results of five-and one-year field-scale experiments in Switzerland. International Journal Of Phytoremediation, 16(7-8): 735-754. doi: 10.1080/15226514.2013.856846
Hossain, Z., Mandal, A. K. A., Datta, S. K. & Biswas, A. K. (2007). Development of NaCl tolerant line in Chrysanthemum morifolium Ramat. through shoot organogenesis of selected callus line. Journal of Biotechnology, 129(4), 658-667. https://doi.org/10.1016/j.jbiotec.2007.02.020
Hussain,K., Sahadevan, K. K. & Salim, N. (2010). Bioaccumulation and release of mercury in Vigna mungo (L.) hepper seedlings. Journal of Stress Physiology and Biochemistry, 6(3), 56-63.
Jacob, J. M., Karthik, C., Saratale, R. G., Kumar, S. S., Prabakar, D., Kadirvelu, K., et al. (2018). Biological approaches to tackle heavy metal pollution: a survey of literature. Journal of Environmental Management, 217: 56-70. doi: 10.1016/j.jenvman.2018.03.077
Jayasri, M. A. & Suthindhiran, K. (2017). Effect of zinc and lead on the physiological and biochemical properties of aquatic plant Lemna minor: its potential role in phytoremediation. Applied Water Science, 7(3), 1247-1253. https://doi.org/10.1007/s13201-015-0376-x
Kaya, C., Tuna, A. L., Ashraf, M. & Altunlu, H. (2007). Improved salt tolerance of melon (Cucumis melo L.) by the addition of proline and potassium nitrate. Environmental and Experimental Botany, 60(3), 397-403. https://doi.org/10.1016/j.envexpbot.2006.12.008
Kishor, P. K., Sangam, S., Amrutha, R. N., Laxmi, P. S., Naidu, K. R., Rao, K. R. S. S., Rao, S., Reddy, K. J., Theriappan, P. & Sreenivasulu, N. (2005). Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Current Science, 88, 424-438. http://www.jstor.org/stable/24110209
Lichtenthaler, H. K. & Wellburn, A. R. (1983). Determination of total carotenoids and chlorophyll a and b of leaf extract in different solvents. Biochemical Society Transactions, 11, 591-592.
Lucini, L. & Bernardo, L. (2015). Comparison of proteome response to saline and zinc stress in lettuce. Frontiers in Plant Science, 6, 1-12. https://doi.org/10.3389/fpls.2015.00240
Lugojan, C. & Ciulca, S. (2011). Evaluation of relative water content in winter wheat. Journal of Horticulture,Forestand Biotechnology, 15(2), 173-177.
Marichali, A., Dallali, S., Ouerghemmi, S., Sebei, H., Casabianca, H. & Hosni, K. (2016). Responses of Nigella sativa L. to zinc excess: focus on germination, growth, yield and yield components, lipid and terpene metabolism, and total phenolics and antioxidant activities. Journal of Agricultural and Food Chemistry, 64(8), 1664-1675.https://doi.org/10.1021/acs.jafc.6b00274
Marschner, H. (1995). Mineral nutrition of higher plants. Second edition (pp 889). London Academic Press.
Mench, M., Lepp, N., Bert, V., Schwitzguebel, J.-P., Gawronski, S. W., Schröder, P. & Vangronsveld, J. (2010). Successes and limitations of phytotechnologies at field scale: outcomes, assessment and outlook from COST Action 859. Journal of Soils and Sediments, 10(6): 1039-1070. doi: 10.1007/s11368-010-0190-x
Mitch, M. L. (2002). Phytoextraction of toxic metals: a review of biological mechanism. Journal of Environmental Quality, 31(1), 109-120. doi: 10.2134/jeq2002.1090
Mukhopadhyay, M. & Mondal, T. K. Effect of zinc and boron on growth and water relations of Camellia sinensis (L.) O. Kuntze cv. T-78. National Academy Science Letters, 38(3), 283-286. https://doi.org/10.1007/s40009-015-0381-5
Nakano, Y. & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22(5), 867-880. https://doi.org/10.1093/oxfordjournals.pcp.a076232
Nanda, R. & Agrawal, V. (2016). Elucidation of zinc and copper induced oxidative stress, DNA damage and activation of defence system during seed germination in Cassia angustifolia Vahl. Environmental and Experimental Botany, 125, 31-41. https://doi.org/10.1016/j.envexpbot.2016.02.001
Noctor, G. & Foyer, C. H. (1998). Ascorbate and glutathione, keeping active oxygen under control. Annual Review of Plant Physiology and Plant Molecular Biology, 49(1), 249-279.
Pandey, S. N. & Gautam, S. (2009). Effect of nickel stress on growth and physiological responses of Trigonella foenum-graecum L. plants grown in Gomati upland alluvial soil of Lucknow. Indian Botanical Society, 88(1), 1-3.
Pandey, V. C. & Singh, D. P. (2020). Bermuda grass –its role in ecological restoration and biomass production. In: Phytoremediation Potential of Perennial Grasses. Elsevier, pp. 227-244.
Parvaiz, A. & Satyawati, S. (2008). Salt stress and phyto-biochemical responses of plants- a review. Plant Soil and Environment, 54(3), 89-99.
Peng, D., Shafi, M., Wang, Y., Li, S, Yan, W., Chen, J, Ye, Z. & Liu, D. (2015). Effect of Zn stresses on physiology, growth, Zn accumulation, and chlorophyll of Phyllostachys pubescens. Environmental Science and Pollution Research, 22(19), 14983-14992. https://doi.org/10.1007/s11356-015-4692-3
Prakash, V. & Lawrence K. (2007). Antioxidative response to copper-induced stress in Cicer arietinum L. Indian Journal of Agricultural Biochemistry, 20(1), 23-26.
Quariti, O., Boussama, N., Zarrouk, M., Cherif, A. & Ghorbal, M. H. (1997). Cadmium and copper-induced changes in tomato membrane lipids. Phytochemistry, 45(7), 343-1350. https://doi.org/10.1016/S0031-9422(97)00159-3
Romero, L.C., Domínguez-Solís, J. R., Gutierrez-Alcala, G. & Gotor, C. (2001). Salt regulation of O-acetylserine (thiol) lyase in Arabidopsis thaliana and increased tolerance in yeast. Plant Physiology and Biochemistry, 39(7-8), 643-647. https://doi.org/10.1016/S0981-9428(01)01277-3
Sakakibara, M., Ohmori, Y., Ha, N. T. H., Sano, S. & Sera, K. (2011). Phytoremediation of heavy metal-contaminated water and sediment by Eleocharis acicularis. CLEAN- Soil, Air and Water 39(8), 735-741. doi: 10.1002/clen.201000488
Scandalios, J. G. (1993). Oxygen stress and superoxide dismutases. Plant Physiology, 101, 7-12.
Schaedle, M. & Bassham, J. A. (1977). Chloroplast glutathione reductase. Plant Physiology, 59(5), 1011-1012. https://doi.org/10.1104/pp.59.5.1011
Sharma, P., Jha, A. B., Dubey, R. S. & Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany, 2012, 1-26. doi:10.1155/2012/217037
Sheoran, V., Sheoran, A. & Poonia, P. (2009). Phytomining: a review. Minerals Engineering, 22(12 1019. doi: 10.1016/j.mineng.2009.04.001
Singh, D., Nath, K. & Sharma, Y. K. (2007). Response of wheat seed germination and seedling growth under copper stress. Journal of Environmental Biology, 28(2), 409-414.
Sirhindi, G., Sharma, P., Singh, A., Kaur, H. & Mir, M. (2015). Alteration in photosynthetic pigments, osmolytes and antioxidants in imparting copper stress tolerance by exogenous jasmonic acid treatment in Cajanus cajan. International Journal of Plant Physiology and Biochemistry, 7(3), 30-39. https://doi.org/10.5897/IJPPB2015.0228
Suman, J., Uhlik, O., Viktorova, J. & Macek, T. (2018). Phytoextraction of heavy metals: a promising tool for clean-up of polluted environment? Frontiers in Plant Science. 9. doi: 10.3389/fpls.2018.01476
Sun, H., Li, L., Wang, X., Wu, S. & Wang, X. (2011). Ascorbate-glutathione cycle of mitochondria in osmoprimed soybean cotyledons in response to imbibitional chilling injury. Journal of Plant Physiology, 168(3), 226-232. https://doi.org/10.1016/j.jplph.2010.07.017
Szabados, L. & Savoure, A. (2010). Proline: a multifunctional amino acid. Trends in Plant Sciences, 15(2), 89-97. https://doi.org/10.1016/j.tplants.2009.11.009
Tavallali, V., Rahemi, M., Eshghi, S., Kholdebarin, B. & Ramezanian, A. (2010). Zinc alleviates salt stress and increases antioxidant enzyme activity in the leaves of pistachio (Pistacia vera L. ‘Badami’) seedlings. Turkish Journal of Agriculture and Forestry, 34(4), 349-359. doi:10.3906/tar-0905-10
Tavallali, V.,Rahemi, M., Maftoun, M., Panahi, B., Karimi, S., Ramezanian, A. & Vaezpour, M. (2009). Zinc influence and salt stress on photosynthesis, water relations, and carbonic anhydrase activity in pistachio. Scientia Horticulturae, 123(2), 272-279. https://doi.org/10.1016/j.scienta.2009.09.006
Thimmaiah, S. K. (1999). Standard methods of biochemical analysis (pp 248–249). Kalyani Publishers, New Delhi.
Thounaojam, T. C., Pandaa, P., Mazumdar, P., Kumar, D., Sharma, G. D., Sahoo, L. & Sanjib, P. (2012). Excess copper induced oxidative stress and response of antioxidants in rice. Plant Physiology and Biochemistry, 53, 33-39. https://doi.org/10.1016/j.plaphy.2012.01.006
Tlustos, P., Szakova, J., Hrubi, J., Hartman, I., Najmanova, J., Nedìlník, J., et al. (2006). Removal of as, Cd, Pb, and Zn from contaminated soil by high biomass producing plants. Plant Soil and Environment, 52(9), 413-423. doi: 10.17221/3460-pse
Turner, N. C. (1981). Techniques and experimental approaches for the measurement of plant water stress. Plant and Soil, 58(1), 339-366. https://doi.org/10.1007/BF02180062
Vangronsveld, J., Herzig, R., Weyens, N., Boulet, J., Adriaensen, K., Ruttens, A., Thewys, T., Vassilev, A., Meers, E., Nehnevajova, E., Lelie, D. V. & Mench, M. (2009). Phytoremediation of contaminated soils and groundwater: lessons from the field. Environmental Science and Pollution Research, 16(7), 765-794. doi: 10.1007/s11356-009-0213-6
Vijendra, P. D., Huchappa, K. M., Lingappa, R., Basappa, G., Jayanna, S. G. & Kumar, V. (2016). Physiological and biochemical changes in moth bean (Vigna aconitifoliaL.) under cadmium stress. Journal of Botany, 2016, 1-13. http://dx.doi.org/10.1155/2016/6403938
Yan, A., Wang, Y., Tan, S. N., Mohd Yusof, M. L., Ghosh, S., & Chen, Z. (2020). Phytoremediation: a promising approach for revegetation of heavy metal-polluted land. Frontiers in Plant Science, 11, 359.
Yurekli, F. & Porgali, Z. (2006). The effects of excessive exposure to copper in bean plants. Acta Biologica Cracoviensia Series Botanica, 48(2), 7-13.
Zhao, S., Liu, Q., Qi, Y. & Duo, L. (2010). Responses of root growth and protective enzymes to copper stress in turfgrass. Acta Biologica Cracoviensia Series Botanica, 52(2), 7-11. doi: 10.2478/v10182-010-0017-5
Section
Research Articles

How to Cite

Assessment of biochemical and physiological tolerance mechanism of the multipurpose paradise tree (Simarouba amara Aubl.) under zinc and copper stress. (2022). Journal of Applied and Natural Science, 14(2), 477-489. https://doi.org/10.31018/jans.v14i2.3452