##plugins.themes.bootstrap3.article.main##

Madhavi Konni Bhavya Kavitha Dwarapureddi Swathi Dash Aman Raj Manoj Kumar Karnena

Abstract

Due to rapid urbanization and industrialization, water demand has increased worldwide. The availability of potable water is becoming more difficult in the global scenario. Hazardous pollution disposal by the industries to the nearest stream and search for the facile environmentally friendly technologies capable of treating these pollutants become more challenging. Effluent disposal consisting of the dyes without proper pre-treatment adversely affects the aquatic life and ecological system as they are carcinogenic and highly toxic. Dyes in the water are becoming a significant problem in the current scenario and attracted many researchers to research the current topic. Even though the conventional treatment options are available for treating polluted water, still they are not enough for the demand and supply. Thus, new state-of-the-art technologies are required to meet the demand and supply. Titanium dioxide nanofibers synthesized by electrospinning techniques have proven to be new nanomaterials gaining prominence in science. Several researchers are using these fibres by fabricating them into a thin film for pollutant removal and water treatment. They are gaining much importance as they perform best in treating water containing both organic and inorganic loads. The present review provides insights into the background and the origin of the electrospun nanofibers and preparation mechanisms. Further, we identified 25 widely used titanium dioxide electrospun nanofibers with various combinations in removing the dyes from the aqueous medium.

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Electrospinning, nanofibers, titanium dioxide, Wastewater treatment

References
Adhikari, S. P., Awasthi, G. P., Kim, H. J., Park, C. H. & Kim, C. S. (2016). Electrospinning directly synthesized porous TiO2 nanofibers modified by graphitic carbon nitride sheets for enhanced photocatalytic degradation activity under solar light irradiation. Langmuir 32(24): 6163-6175. doi: 10.1021/acs.langmuir.6b01085.
Aghasiloo, P., Yousefzadeh, M., Latifi, M. & Jose, R. (2019). Highly porous TiO2 nanofibers by humid-electrospinning with enhanced photocatalytic properties. J Alloys Compd 790: 257-265. doi: https://doi.org/10.1016/j.jallcom.2019.03.175
Ali, U., Niu, H., Aslam, S., Jabbar, A., Rajput, A. W. & Lin, T. (2017). Needleless electrospinning using sprocket wheel disk spinneret. J Mater Sci 52(12): 7567-7577. doi: https://doi.org/10.1007/s10853-017-0989-6
Altaf, A. A., Ahmed, M., Hamayun, M., Kausar, S., Waqar, M. & Badshah, A. (2020). Titania nano-fibers: a review on synthesis and utilities. Inorganica Chimica Acta 501: 119268. doi: https://doi.org/10.1016/j.ica.2019.119268
Ananpattarachai, J., & Kajitvichyanukul, P. (2016). Enhancement of chromium removal efficiency on adsorption and photocatalytic reduction using a bio-catalyst, titania-impregnated chitosan/xylan hybrid film. J Clean Prod 130: 126-136. doi: https://doi.org/10.1016/j.jclepro.2015.10.098
Armstrong, M., Nealy, S., Severino, C., Maniukiewicz, W., Modelska, M., Binczarski, M. & Stanishevsky, A. (2020). Composite materials made from glass microballoons and ceramic nanofibers for use as catalysts and catalyst supports. J Mater Sci 55(27): 12940-12952. doi: https://doi.org/10.1007/s10853-020-04956-1
Barhoum, A., Rasouli, R., Yousefzadeh, M., Rahier, H. & Bechelany, M. (2019). Nanofiber technologies: history and development. Handbook of nanofibers. Springer International Publishing, Cham, 3-43. doi: https://doi.org/10.1007/978-3-319-53655-2_54
Bölgen, N. & Vaseashta, A. (2021). Electrospun Nanomaterials: Applications in Water Contamination Remediation. Water Safety, Security and Sustainability, 197-213. doi: https://doi.org/10.1007/978-3-030-76008-3_8
Bora, A. J., Gogoi, S., Baruah, G., & Dutta, R. K. (2016). Utilization of co-existing iron in arsenic removal from groundwater by oxidation-coagulation at optimized pH. J Environ Chem Eng 4(3): 2683-2691. doi: https://doi.org/10.1016/j.jece.2016.05.012
Chang, S. H., Wang, K. S., Chao, S. J., Peng, T. H., & Huang, L. C. (2009). Degradation of azo and anthraquinone dyes by a low-cost Fe0/air process. J Hazard Mater 166(2-3): 1127-1133. doi: https://doi.org/10.1016/j.jhazmat.2008.12.021
Chen, H., Huang, M., Liu, Y., Meng, L., & Ma, M. (2020). Functionalized electrospun nanofiber membranes for water treatment: A review. Sci Total Environ 739: 139944. doi: https://doi.org/10.1016/j.scitotenv.2020.139944
Cooley, J. F. (1902). U.S. Patent No. 692,631. Washington, DC: U.S. Patent and Trademark Office.
Démuth, B., Farkas, A., Pataki, H., Balogh, A., Szabó, B., Borbás, E. & Nagy, Z. K. (2016). Detailed stability investigation of amorphous solid dispersions prepared by single-needle and high-speed electrospinning. Int J Pharm, 498(1-2): 234-244. doi: https://doi.org/10.1016/j.ijpharm.201 5.12.029
Drew, C., Liu, X., Ziegler, D., Wang, X., Bruno, F. F., Whitten, J. & Kumar, J. (2003). Metal oxide-coated polymer nanofibers. Nano Lett 3(2): 143-147. doi: https://doi.org/10.1021/nl025850m
Ehsani, M. & Aroujalian, A. (2020). Fabrication of electrospun polyethersulfone/titanium dioxide (PES/TiO2) composite nanofibers membrane and its application for photocatalytic degradation of phenol in aqueous solution. Polym Adv Technol 31(4): 772-785. doi: https://doi.org/10.1002/pat.4813
Gao, Y., Yan, N., Jiang, C., Xu, C., Yu, S., Liang, P. & Huang, X. (2020). Filtration-enhanced highly efficient photocatalytic degradation with a novel electrospun rGO@ TiO2 nanofibrous membrane: implication for improving photocatalytic efficiency. Appl Catal B 268: 118737. doi: https://doi.org/10.1016/j.apcatb.2020.118737
Greenstein, K. E., Nagorzanski, M. R., Kelsay, B., Verdugo, E. M., Myung, N. V., Parkin, G. F., & Cwiertny, D. M. (2021). Carbon–titanium dioxide (C/TiO2) nanofiber composites for chemical oxidation of emerging organic contaminants in reactive filtration applications. Environmental Science: Nano 8(3): 711-722. doi: https://doi.org/10.1039/D0EN00975J
Grothe, T., Böttjer, R., Wehlage, D., Großerhode, C., Storck, J. L., Juhász Junger, I. & Ehrmann, A. (2018). Photocatalytic properties of TiO2 composite nanofibers electrospun with different polymers. Inorganic and Composite Fibers 303-319. doi: 10.1016/B978-0-08-102228-3.00014-1
Gugulothu, D., Barhoum, A., Nerella, R., Ajmer, R. & Bechlany, M. (2018). Fabrication of nanofibers: electrospinning and non-electrospinning techniques. Handbook of Nanofibers 1-34. doi: https://doi.org/10.1007/978-3-319-53655-2_6
Hou, Y., Yan, S., Huang, G., Yang, Q., Huang, S., & Cai, J. (2020). Fabrication of N-doped carbons from waste bamboo shoot shell with high removal efficiency of organic dyes from water. Bioresour Technol 303, 122939. doi: https://doi.org/10.1016/j.biortech.2020.122939
Istirohah, T., Himmah, S. W. & Diantoro, M. (2019). Fabrication of aligned PAN/TiO2 fiber using Electric Electrospinning (EES). Mater Today Proc 13: 211-216. doi: 10.1016/j.matpr.2019.03.216
Jose, A., Pai, S. D. K. R., Pinheiro, D. & Kasinathan, K. (2021). Visible light photodegradation of organic dyes using electrochemically synthesized MoO3/ZnO. Environmental Science and Pollution Research, 28(37), 52202-52215. doi: https://doi.org/10.1007/s11356-021-14311-9
Khan, I., Sadiq, M., Khan, I. & Saeed, K. (2019). Manganese dioxide nanoparticles/activated carbon composite as efficient UV and visible-light photocatalyst. Environmental Science and Pollution Research 26(5): 5140-5154. doi: https://doi.org/10.1007/s11356-018-4055-y
Khan, S., Sadiq, M., Kim, D. S., Ullah, M. & Muhammad, N. (2022). TiO2 and its binary ZnTiO2 and ternary CdZnTiO2 nanocomposites as efficient photocatalysts for the organic dyes degradation. Appl Water Sci 12(6): 1-12. doi: https://doi.org/10.1007/s13201-022-01628-0
Kim, D., Noh, W. Jo, S., & Lee, T. S. (2021). Electrospun mesoporous silica nanofibers decorated with titanium dioxide nanoparticles for a repeatable photocatalysis. Molecular Crystals and Liquid Crystals, 1-16. doi: https://doi.org/10.1080/15421406.2021.1956761
Kim, J. H., Lee, J. H., Kim, J. Y., & Kim, S. S. (2018). Synthesis of aligned TiO2 nanofibers using electrospinning. Appl Sci 8(2): 309. doi: https://doi.org/10.3390/app8020309
Kudhier, M. A., Sabry, R. S., Al-Haidarie, Y. K. & Al-Marjani, M. F. (2018). Significantly enhanced antibacterial activity of Ag-doped TiO2 nanofibers synthesized by electrospinning. Mater Technol 33(3): 220-226. doi: https://doi.org/10.1080/10667857.2017.1396778
Kumar, P. S., Sundaramurthy, J., Sundarrajan, S., Babu, V. J., Singh, G., Allakhverdiev, S. I., & Ramakrishna, S. (2014). Hierarchical electrospun nanofibers for energy harvesting, production and environmental remediation. Energy Environ Sci 7(10): 3192-3222. doi: https://doi.org/10.1039/C4EE00612G
Li, W., Li, T., Li, G., An, L., Li, F. & Zhang, Z. (2017). Electrospun H4SiW12O40/cellulose acetate composite nanofibrous membrane for photocatalytic degradation of tetracycline and methyl orange with different mechanism. Carbohydr Polym 168: 153-162.
Li, X., Chen, Y., Hu, X., Zhang, Y., & Hu, L. (2014). Desalination of dye solution utilizing PVA/PVDF hollow fiber composite membrane modified with TiO2 nanoparticles. J Membr Sci 471: 118-129. doi: https://doi.org/10.1016/j.memsci.2014.08.018
Lian, H. & Meng, Z. (2018). A novel and highly photocatalytic “TiO2wallpaper” made of electrospun TiO2/bioglass hybrid nanofiber. Mater Sci Semicond Process 80: 68-73. doi: https://doi.org/10.1016/j.mssp.2018.02.019
Liao, Y., Loh, C. H., Tian, M., Wang, R. & Fane, A. G. (2018). Progress in electrospun polymeric nanofibrous membranes for water treatment: Fabrication, modification and applications. Prog Polym Sci 77: 69-94. doi: https://doi.org/10.1016/j.progpolymsci.2017.10.003
Luo, Y., Jia, Y., Zhang, D., & Cheng, X. (2016). Coaxial electrospinning method for the preparation of TiO2@ CdS/PVA composite nanofiber Mat and investigation on its photodegradation catalysis. Photochem Photobiol 92(4): 515-522. doi: https://doi.org/10.1111/php.12591
Mahltig, B., Gutmann, E., Meyer, D. C., Reibold, M., Dresler, B., Günther, K. & Böttcher, H. (2007). Solvothermal preparation of metallized titania sols for photocatalytic and antimicrobial coatings. J Mater Chem 17(22): 2367-2374. doi: https://doi.org/10.1039/B702519J
Malato, S., Maldonado, M. I., Fernandez-Ibanez, P., Oller, I., Polo, I. & Sánchez-Moreno, R. (2016). Decontamination and disinfection of water by solar photocatalysis: The pilot plants of the Plataforma Solar de Almeria. Materials Science in Semiconductor Processing 42: 15-23.
Marinho, B. A., de Souza, S., de Souza, A. A. U. & Hotza, D. (2021). Electrospun TiO2 nanofibers for water and wastewater treatment: a review. J Mater Sci 56(9): 5428-5448. doi: https://doi.org/10.1007/s10853-020-05610-6
Nada, A. A., Nasr, M., Viter, R., Miele, P., Roualdes, S., & Bechelany, M. (2017). Mesoporous ZnFe2O4@ TiO2 nanofibers prepared by electrospinning coupled to PECVD as highly performing photocatalytic materials. J Phys Chem C 121(44): 24669-24677. doi: https://doi.org/10.1021/acs.jpcc.7b08567
Nidheesh, P. V. & Singh, T. A. (2017). Arsenic removal by electrocoagulation process: recent trends and removal mechanism. Chemosphere 181: 418-432. doi: https://doi.org/10.1016/j.chemosphere.2017.04.082
Ortega, A., Oliva, I., Contreras, K. E., González, I., Cruz-Díaz, M. R., & Rivero, E. P. (2017). Arsenic removal from water by hybrid electro-regenerated anion exchange resin/electrodialysis process. Sep Purif Technol 184: 319-326. doi: https://doi.org/10.1016/j.seppur.2017.04.050
Pan, C. Y., Xu, G. R., Xu, K., Zhao, H. L., Wu, Y. Q., Su, H. C., & Das, R. (2019). Electrospun nanofibrous membranes in membrane distillation: Recent developments and future perspectives. Sep Purif Technol. 221: 44-63. doi: https://doi.org/10.1016/j.seppur.2019.03.080
Panthi, G., Park, S. J., Chae, S. H., Kim, T. W., Chung, H. J., Hong, S. T. & Kim, H. Y. (2017). Immobilization of Ag3PO4 nanoparticles on electrospun PAN nanofibers via surface oximation: Bifunctional composite membrane with enhanced photocatalytic and antimicrobial activities. Ind Eng Chem Res 45: 277-286. doi: https://doi.org/10.1016/j.jiec.2016.09.035
Park, J. Y., Hwang, K. J., Lee, J. W., & Lee, I. H. (2011). Fabrication and characterization of electrospun Ag-doped TiO 2 nanofibers for photocatalytic reaction. J Mater Sci 46(22): 7240-7246. doi: https://doi.org/10.1007/s10853-011-5683-5
Pascariu, P., Airinei, A., Iacomi, F., Bucur, S. & Suchea, M. P. (2019). Electrospun TiO2-based nanofiber composites and their bio-related and environmental applications. In Functional Nanostructured Interfaces for Environmental and Biomedical Applications (pp. 307-321). Elsevier. doi: https://doi.org/10.1016/B978-0-12-814401-5.00012-8
Peng, S., Jin, G., Li, L., Li, K., Srinivasan, M., Ramakrishna, S. & Chen, J. (2016). Multi-functional electrospun nanofibres for advances in tissue regeneration, energy conversion & storage, and water treatment. Chem Soc Rev 45(5): 1225-1241. doi: https://doi.org/10.1039/C5CS00777A
Prado-Prone, G., Silva-Bermudez, P., Almaguer-Flores, A., García-Macedo, J. A., García, V. I., Rodil, S. E. & Velasquillo, C. (2018). Enhanced antibacterial nanocomposite mats by coaxial electrospinning of polycaprolactone fibers loaded with Zn-based nanoparticles. Nanomed Nanotechnol Biol Med 14(5): 1695-1706. doi: 10.1016/j.nano.2018.04.005.
Qi, W., Yang, Y., Du, J., Yang, J., Guo, L. & Zhao, L. (2021). Highly Photocatalytic Electrospun Zr/Ag Co-doped Titanium Dioxide Nanofibers for Degradation of Dye. J Colloid Interface Sci 603: 594-603. doi: https://doi.org/10.1016/j.jcis.2021.06.109
Ramasundaram, S., Son, A., Seid, M. G., Shim, S., Lee, S. H., Chung, Y. C. & Hong, S. W. (2015). Photocatalytic applications of paper-like poly (vinylidene fluoride)–titanium dioxide hybrids fabricated using a combination of electrospinning and electrospraying. J Hazard Mater 285: 267-276. doi: 10.1016/j.jhazmat.2014.12.004.
Ramos, P. G., Luyo, C., Sánchez, L. A., Gomez, E. D., & Rodriguez, J. M. (2020). The spinning voltage influence on the growth of ZnO-rGO nanorods for photocatalytic degradation of methyl orange dye. Catalysts, 10(6): 660. doi: https://doi.org/10.3390/catal10060660
SalehHudin, H. S., Mohamad, E. N., Mahadi, W. N. L. & Muhammad Afifi, A. (2018). Multiple-jet electrospinning methods for nanofiber processing: A review. Mater Manuf Process 33(5): 479-498. doi: https://doi.org/10.1080/10426914.2017.1388523
Sedghi, R., Moazzami, H. R., Davarani, S. S. H., Nabid, M. R. & Keshtkar, A. R. (2017). A one step electrospinning process for the preparation of polyaniline modified TiO2/polyacrylonitile nanocomposite with enhanced photocatalytic activity. J Alloys Compd 695: 1073-1079. doi: https://doi.org/10.1016/j.jallcom.2016.10.232
Seong, D. B., Son, Y. R., & Park, S. J. (2018). A study of reduced graphene oxide/leaf-shaped TiO2 nanofibers for enhanced photocatalytic performance via electrospinning. J Solid State Chem 266: 196-204. doi: https://doi.org/10.1016/j.jssc.2018.06.003
Shi, Y., Yang, D., Li, Y., Qu, J. & Yu, Z. Z. (2017). Fabrication of PAN@ TiO2/Ag nanofibrous membrane with high visible light response and satisfactory recyclability for dye photocatalytic degradation. Appl Surf Sci 426: 622-629. doi: https://doi.org/10.1016/j.apsusc.2017.06.302
Singh, H. K., Muneer, M. & Bahnemann, D. (2003). Photocatalyzed degradation of a herbicide derivative, bromacil, in aqueous suspensions of titanium dioxide. Photochem Photobiol Sci 2(2): 151-156. doi: https://doi.org/10.1039/B206918K
Someswararao, M. V., Dubey, R. S., Subbarao, P. S. V., & Singh, S. (2018). Electrospinning process parameters dependent investigation of TiO2 nanofibers. Results Phys 11: 223-231. doi: https://doi.org/10.1016/j.rinp.2018.0 8.054
Sonawane, R. S., Hegde, S. G., & Dongare, M. K. (2003). Preparation of titanium (IV) oxide thin film photocatalyst by sol–gel dip coating. Mater Chem Phys 77(3): 744-750. doi: 10.1016/S0254-0584(02)00138-4
Song, P., Yang, Z., Zeng, G., Yang, X., Xu, H., Wang, L., & Ahmad, K. (2017). Electrocoagulation treatment of arsenic in wastewaters: A comprehensive review. Chem Eng J 317: 707-725. doi: https://doi.org/10.1016/j.cej.2017.0 2.086
Song, Y., Zhao, F., Li, Z., Cheng, Z., Huang, H. Yang, M. (2021). Electrospinning preparation and anti-infrared radiation performance of silica/titanium dioxide composite nanofiber membrane. RSC Advances 11(39): 23901-23907. doi: https://doi.org/10.1039/D1RA03917B
Tang, Q., Meng, X., Wang, Z., Zhou, J., & Tang, H. (2018). One-step electrospinning synthesis of TiO2/g-C3N4 nanofibers with enhanced photocatalytic properties. Appl Surf Sci 430: 253-262. doi: https://doi.org/10.1016/j.apsusc.2017.07.288
Tucker, N., Stanger, J. J., Staiger, M. P., Razzaq, H. & Hofman, K. (2012). The history of the science and technology of electrospinning from 1600 to 1995. J Eng Fibers Fabr 7(2_suppl), 155892501200702S10. doi: https://doi.org/10.1177/155892501200702S10
Vella, G., Imoberdorf, G. E., Sclafani, A., Cassano, A. E., Alfano, O. M. & Rizzuti, L. (2010). Modeling of a TiO2-coated quartz wool packed bed photocatalytic reactor. Appl Catal B 96(3-4): 399-407. doi: 10.1016/j.apcatb.2010.02.037
Vild, A., Teixeira, S., Kühn, K., Cuniberti, G. & Sencadas, V. (2016). Orthogonal experimental design of titanium dioxide—Poly (methyl methacrylate) electrospun nanocomposite membranes for photocatalytic applications. J Environ Chem Eng 4(3): 3151-3158. doi: https://doi.org/10.1016/j.jece.2016.06.029
Wang, C., Hu, L., Chai, B., Yan, J. & Li, J. (2018). Enhanced photocatalytic activity of electrospun nanofibrous TiO2/g-C3N4 heterojunction photocatalyst under simulated solar light. Appl Surf Sci 430: 243-252. doi: 10.1016/j.apsusc.2017.08.036
Wang, T., Gao, Y., Tang, T., Bian, H., Zhang, Z., Xu, J., ... & Chu, X. (2019). Preparation of ordered TiO2 nanofibers/nanotubes by magnetic field assisted electrospinning and the study of their photocatalytic properties. Ceram Int 45(11): 14404-14410. doi: 10.1016/j.ceramint.2019.04.158
Wu, J. & Hong, Y. (2016). Enhancing cell infiltration of electrospun fibrous scaffolds in tissue regeneration. Bioact Mater 1(1), 56-64. doi: https://doi.org/10.1016/j.bioactm at.2016.07.001
Xie, R., Zhang, L., Liu, H., Xu, H., Zhong, Y., Sui, X., & Mao, Z. (2017). Construction of CQDs-Bi20TiO32/PAN electrospun fiber membranes and their photocatalytic activity for isoproturon degradation under visible light. Mater Res. Bull. ,94, 7-14. doi: https://doi.org/10.1016/j.materresbull.2017.05.040
Xu, D., Li, L., He, R., Qi, L., Zhang, L., & Cheng, B. (2018). Noble metal-free RGO/TiO2 composite nanofiber with enhanced photocatalytic H2-production performance. Appl Surf Sci 434, 620-625. doi: https://doi.org/10.1016/j.apsusc.2017.10.192
Xu, Z., Li, X., Wang, W., Shi, J., Teng, K., Qian, X. & Liu, L. (2016). Microstructure and photocatalytic activity of electrospun carbon nanofibers decorated by TiO2 nanoparticles from hydrothermal reaction/blended spinning. Ceram Int.  42(13), 15012-15022. doi: 10.1016/j.ceramint.2016.06.150
Xue, J., Wu, T., Dai, Y., & Xia, Y. (2019). Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chem Rev., 119(8): 5298-5415. doi: https://doi.org/10.1021/acs.chemrev.8b00593
Zhou, F. L., Gong, R. H. & Porat, I. (2009). Three-jet electrospinning using a flat spinneret. J Mater Sci 44(20), 5501-5508. doi: 10.1007/s10853-009-3768-1
Zhu, F., Zheng, Y. M., Zhang, B. G. & Dai, Y. R. (2020). A critical review on the electrospun nanofibrous membranes for the adsorption of heavy metals in water treatment. J Hazard Mater., 401, 123608. doi: https://doi.org/10.1016/j.jhazmat.2020.123608
Section
Research Articles

How to Cite

Titanium dioxide electrospun nanofibers for dye removal- A review. (2022). Journal of Applied and Natural Science, 14(2), 450-458. https://doi.org/10.31018/jans.v14i2.3436