Article Main

Pooja https://orcid.org/0000-0002-2365-5099 Vikram https://orcid.org/0000-0002-1733-3667 Jyoti Sharma Shivani Verma Asha Sharma https://orcid.org/0000-0002-8011-6614

Abstract

The abundance of silicon (Si) in the earth's crust is found as silicon dioxide (SiO2). But this abundance of Si is not a sign that the plants take up an adequate amount of Si. This review article incorporates research based on Si to understand the importance of Si in plants under various stress conditions and its role in sustainable agricultural production. Si's application is considered a better approach to providing stress tolerance to plants under stress conditions. The review describes the different phases of Si, its absorption, transport in plants, and its various mechanisms of action to tolerate specific stresses. The uptake and transport of Si through various Si transporters have also been reported. This review also discusses the various mechanisms of Si under biotic or abiotic stress in different plants. The application of Si improves soil quality and soil health and enhances the soil microbial population. In addition, the role of Si in the upregulation and down-regulation of proteins under stressful conditions has also been reported. The information can help to better understand the importance and mechanism of Si in plants and its application in agriculture.

Article Details

Article Details

Keywords

Abiotic stress, Pathogen stress, Proteomics, Silicon, Transporter

References
Adrees, M., Ali, S., Rizwan, M., Zia-ur-Rehman, M., Ibrahim, M., Abbas, F., Farid, M., Qayyum, M. F. & Irshad, M. K. (2015). Mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants: a review. Ecotoxicology and Environmental Safety, 119, 186-197. doi:10.1016/j.ecoenv.2015.05.011 
Agarie, S. H. U., Agata, W., Kubota, F. & Kaufman, P. B. (1998). Effects of silicon on transpiration and leaf conductance in rice plants (Oryza sativa L.). Plant Production and Science, 1, 89–95. doi: 10.1626/pps.1.89
Alhousari, F., & Greger, M. (2018). Silicon and mechanisms of plant resistance to insect pests. Plants, 7(2), 33. https://doi.org/10.3390/plants7020033
Ali, S., Rizwan, M., Ullah, N., Bharwana, S.A., Waseem, M., Farooq, M.A., Abbasi, G.H. & Farid, M. (2016). Physiological and biochemical mechanisms of silicon-induced copper stress tolerance in cotton (Gossypium hirsutum L.). Acta Physiologiae Plantarum, 38(11), 1-11. doi:10.1007/s11738-016-2279-3 
AM, D., MM, H., & AA, E. A. (2018). Effect of silicon on the tolerance of wheat (Triticum aestivum L.) to salt stress at different growth stages: case study for the management of irrigation water. Plants, 7(2), 29. https://doi.org/10.3390/plants7020029
Arif, Y., Singh, P., Bajguz, A., Alam, P. & Hayat, S. (2021). Silicon mediated abiotic stress tolerance in plants using physio-biochemical, omic approach and cross-talk with phytohormones. Plant Physiology and Biochemistry, 166, 278-289. https://doi.org/10.1016/j.plaphy.2021.06.002
Basile-Doelsch, I., Meunier, J. D. & Parron, C. (2005). Another continental pool in the terrestrial silicon cycle. Nature, 433(7024), 399-402. doi:10.1038/nature03217 
Bélanger, R. R., Benhamou, N. & Menzies, J. G. (2003). Cytological evidence of an active role of silicon in wheat resistance to powdery mildew (Blumeria graminis f. sp. tritici). Phytopathology, 93(4), 402-412. doi:10.1094/PHYTO.2003.93.4.402 
Bhardwaj, S. & Kapoor, D. (2021). Fascinating regulatory mechanism of silicon for alleviating drought stress in plants. Plant Physiology and Biochemistry, 166, 1044-1053. doi:10.1016/j.plaphy.2021.07.005
Bharwana, S. A., Ali, S., Farooq, M. A., Iqbal, N., Abbas, F. & Ahmad, M. S. A. (2013). Alleviation of lead toxicity by silicon is related to elevated photosynthesis, antioxidant enzymes suppressed lead uptake and oxidative stress in cotton. Journal of Bioremediation & Biodegradation, 4(4), 10-4172. http://dx.doi.org/10.4172/2155-6199.1000187
Bokor, B., Bokorová, S., Ondoš, S., Švubová, R., Lukačová, Z., Hýblová, M., Szemes, T. & Lux, A. (2015). Ionome and expression level of Si transporter genes (Lsi1, Lsi2, and Lsi6) affected by Zn and Si interaction in maize. Environmental Science and Pollution Research, 22(9), 6800-6811. DOI 10.1007/s11356-014-3876-6
Bokor, B., Soukup, M., Vaculík, M., Vd’ačný, P., Weidinger, M., Lichtscheidl, I., Vávrová, S., Šoltys, K., Sonah, H., Deshmukh, R. & Bélanger, R.R., (2019). Silicon uptake and localisation in date palm (Phoenix dactylifera)–A unique association with sclerenchyma. Frontiers in Plant Science, p.988. doi:10.3389/fpls.2019.00988 
Boursiac, Y., Boudet, J., Postaire, O., Luu, D. T., Tournaire-Roux, C. & Maurel, C. (2008). Stimulus-induced downregulation of root water transport involves reactive oxygen species-activated cell signalling and plasma membrane intrinsic protein internalization. Plant Cell 56, 207–218. doi: 10.1111/j.1365-313X.2008.03594.x
Cai K. (2013) Silicon-Mediated Pathogen Resistance in Plants. In: Kretsinger R.H., Uversky V.N., Permyakov E.A. (eds) Encyclopedia of Metalloproteins. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1533-6_454 
Cai, K., Gao, D., Chen, J., & Luo, S. (2009). Probing the mechanisms of silicon-mediated pathogen resistance. Plant signaling & behavior, 4(1), 1-3. doi:10.4161/psb.4.1.7280
Cai, K., Gao, D., Luo, S., Zeng, R., Yang, J., & Zhu, X. (2008). Physiological and cytological mechanisms of silicon‐induced resistance in rice against blast disease. Physiologia Plantarum, 134(2), 324-333. doi:10.1111/j.1399-3054.2008.01140.x 
Carneiro-Carvalho, A., Pinto, T., Ferreira, H., Martins, L., Pereira, C., Gomes-Laranjo, J., & Anjos, R. (2020). Effect of silicon fertilization on the tolerance of Castanea sativa Mill. seedlings against Cryphonectria parasitica Barr. Journal of Plant Diseases and Protection, 127(2), 197-210.
Carré-Missio, V., Rodrigues, F. Á., Schurt, D. A., Pereira, S. C., Oliveira, M. G. A., & Zambolim, L. (2009). Ineficiência do silício no controle da ferrugem do cafeeiro em solução nutritiva. Tropical Plant Pathology, 34, 416-421.
Casey, W. H., Kinrade, S. D., Knight, C. T. G., Rains, D. W., & Epstein, E. (2004). Aqueous silicate complexes in wheat, Triticum aestivum L. Plant, Cell & Environment, 27(1), 51-54. doi:10.1046/j.0016-8025.2003.01124.x 
Chain, F., Côté-Beaulieu, C., Belzile, F., Menzies, J. G., & Bélanger, R. R. (2009). A comprehensive transcriptomic analysis of the effect of silicon on wheat plants under control and pathogen stress conditions. Molecular plant-microbe interactions, 22(11), 1323-1330. doi:10.1094/mpmi-22-11-1323 
Chen, D., Cao, B., Wang, S., Liu, P., Deng, X., Yin, L., & Zhang, S. (2016). Silicon moderated the K deficiency by improving the plant-water status in sorghum. Scientific reports, 6(1), 1-14. doi:10.1038/srep22882 
Chen, D., Wang, S., Yin, L., & Deng, X. (2018). How does silicon mediate plant water uptake and loss under water deficiency?. Frontiers in plant science, 9, 281. doi:10.3389/fpls.2018.00281 
Chen, H. M., Zheng, C. R., Tu, C., & Shen, Z. G. (2000). Chemical methods and phytoremediation of soil contaminated with heavy metals. Chemosphere, 41(1-2), 229-234. doi:10.1016/s0045-6535(99)00415-4 
Chen, W., Yao, X., Cai, K., & Chen, J. (2011). Silicon alleviates drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorption. Biological Trace Element Research, 142, 67–76. doi: 10.1007/s12011-010- 8742-x
Chérif, M., Asselin, A., & Bélanger, R. R. (1994). Defense responses induced by soluble silicon in cucumber roots infected by Pythium spp. Phytopathology, 84(3), 236-242.
Chérif, M., Benhamou, N., Menzies, J. G., & Bélanger, R. R. (1992). Silicon induced resistance in cucumber plants against Pythium ultimum. Physiological and Molecular Plant Pathology, 41(6), 411-425. doi:10.1016/0885-5765(92)90053-X 
Chiba, Y., Mitani, N., Yamaji, N., & Ma, J. F. (2009). HvLsi1 is a silicon influx transporter in barley. Plant Journal, 57, 810–818. doi: 10.1111/j.1365-313X.2008.03728.x
Conley, D. J. (2002). Terrestrial ecosystems and the global biogeochemical silica cycle. Global Biogeochemical Cycles, 16(4), 68-1. doi:10.1029/2002gb001894 
Cornelis, J. T., Delvauz, B., Georg, R. B., Lucas, Y., Ranger, J., & Opfergelt, S. (2011). Tracing the origin of dissolved silicon transferred from various soil-plant systems towards rivers: a review. Biogeosciences 8:89–112.
Coskun, D., Deshmukh, R., Shivaraj, S. M., Isenring, P., & Bélanger, R. R. (2021). Lsi2: A black box in plant silicon transport. Plant and soil, 466(1), 1-20. doi:10.1007/s11104-021-05061-1 
da Cunha, K. P. V., & do Nascimento, C. W. A. (2009). Silicon effects on metal tolerance and structural changes in maize (Zea mays L.) grown on a cadmium and zinc enriched soil. Water, air, and soil pollution, 197(1), 323-330. doi:10.1007/s11270-008-9814-9 
Datnoff, L. E., & Rodrigues, F. A. (2005). The role of silicon in suppressing rice diseases. American Phytopathological Society. doi 10.1094/APSnetFeature-2005-0205
Datnoff, L. E., Snyder, G. H., & Deren, C. W. (1992). Influence of silicon fertilizer grades on blast and brown spot development and on rice yields. Plant Disease, 76(10), 1011-1013.
Debona, D., Rodrigues, F. A., & Datnoff, L. E. (2017). Silicon's role in abiotic and biotic plant stresses. Annual Review of Phytopathology, 55, 85-107. https://doi.org/10.1146/annurev-phyto-080516- 035312
Deshmukh, R. K., Vivancos, J., Guérin, V., Sonah, H., Labbé, C., Belzile, F., & Bélanger, R. R. (2013). Identification and functional characterization of silicon transporters in soybean using comparative genomics of major intrinsic proteins in Arabidopsis and rice. Plant molecular biology, 83(4), 303-315. doi:10.1007/s11103-013-0087-3 
Deshmukh, R. K., Vivancos, J., Ramakrishnan, G., Guérin, V., Carpentier, G., Sonah, H., Labbé, C., Isenring, P., Belzile, F. J. & Bélanger, R. R. (2015). A precise spacing between the NPA domains of aquaporins is essential for silicon permeability in plants. The Plant Journal, 83(3), 489-500. doi:10.1111/tpj.12904 
Dhiman, P., Rajora, N., Bhardwaj, S., Sudhakaran, S. S., Kumar, A., Raturi, G., Chakraborty, K., Gupta, O. P., Devanna, B. N., Tripathi, D. K. & Deshmukh, R. (2021). Fascinating role of silicon to combat salinity stress in plants: An updated overview. Plant Physiology and Biochemistry, 162, 110-123. doi:10.1016/j.plaphy.20 21.02.023 
Dorairaj, D., & Ismail, M. R. (2017). Distribution of silicified microstructures, regulation of cinnamyl alcohol dehydrogenase and lodging resistance in silicon and paclobutrazol mediated Oryza sativa. Frontiers in physiology, 8, 491. https://doi.org/10.3389/fphys.2017.00491
Drees, L. R., Wilding, L. P., Smeck, N. E., & Senkayi, A. L. (1989). Silica in soils: quartz and disordered silica polymorphs. Minerals in soil environments, 1, 913-974. doi:10.2136/sssabookser1.2ed.c19
Epstein, E. (1994). The anomaly of silicon in plant biology. Proceedings of the National Academy of Sciences, 91(1), 11-17. doi:10.1073/pnas.91.1.11 
Epstein, E. (1999). Silicon. Annual review of plant biology, 50(1), 641-664.
Epstein, E. (2001). Silicon in plants: facts vs. concepts. In Studies in Plant Science (Vol. 8, pp. 1-15). Elsevier.
Epstein, E., & Bloom, A. J. (2005). Mineral nutrition of plants: principles and perspectives, 2nd edn. Sinauer Assoc. Inc., Sunderland, UK, 2005. doi:10.2307/2484208 
Exley, C. (2015). A possible mechanism of biological silicification in plants. Frontiers in Plant Science, 6, 853. doi:10.3389/fpls.2015.00853 
Exley, C., & Birchall, J. D. (1993). A mechanism of hydroxyaluminosilicate formation. Polyhedron, 12(9), 1007-1017.
Faiyue, B., AL‐AZZAWI, M. J., & Flowers, T. J. (2012). A new screening technique for salinity resistance in rice (Oryza sativa L.) seedlings using bypass flow. Plant, cell & environment, 35(6), 1099-1108. doi:10.1111/j.1365-3040.2011.02475.x 
Farooq, M., Wahid, A., Kobayashi, N., Fujita, D. B. S. M. A., & Basra, S. M. A. (2009). Sustainable agriculture. Plant Drought Stress: Effects, Mechanisms and Management. Springer, Dordrecht, 153-188.
Fatemi, H., Pour, B. E., & Rizwan, M. (2020). Isolation and characterization of lead (Pb) resistant microbes and their combined use with silicon nanoparticles improved the growth, photosynthesis and antioxidant capacity of coriander (Coriandrum sativum L.) under Pb stress. Environmental Pollution, 266, 114982. https://doi.org/10.1016/j.envpol.2020.114982
Fauteux, F., Rémus-Borel, W., Menzies, J. G., & Bélanger, R. R. (2005). Silicon and plant disease resistance against pathogenic fungi. FEMS Microbiology letters, 249(1), 1-6. doi:10.1016/j.femsle.2005.06.034 
Fawe A., Abou-Zaid, M., Menzies, J. G., & Bélanger, R. R. (1998). Silicon-mediated accumulation of flavonoid phytoalexins in cucumber. Phytopathology, 88(5), 396–401. doi:10.1094/phyto.1998.88.5.396 
Fawe, A., Menzies, J. G., Chérif, M., & Bélanger, R. R. (2001). Silicon and disease resistance in dicotyledons. In: Silicon in Agriculture (Datnoff, L. E., Snyder, G. H. & Korndöfer, G. H., Eds.). Elsevier, Amsterdam, The Netherlands, pp. 159–170.
Fleck, A. T., Nye, T., Repenning, C., Stahl, F., Zahn, M., & Schenk, M. K. (2011). Silicon enhances suberization and lignification in roots of rice (Oryza sativa). Journal of Experimental Botany, 62(6), 2001-2011. doi:10.1093/jxb/erq392 
Fleck, A. T., Schulze, S., Hinrichs, M., Specht, A., Waßmann, F., Schreiber, L., & Schenk, M. K. (2015). Silicon promotes exodermal Casparian band formation in Si-accumulating and Si-excluding species by forming phenol complexes. PLoS One, 10(9), e0138555. doi:10.1371/journal.pone.0138555
Flowers, T. J., & Colmer, T. D. (2015). Plant salt tolerance: adaptations in halophytes. Annals of botany, 115(3), 327-331. https://doi.org/10.1093/aob/mcu267
French‐Monar, R. D., Rodrigues, F. A., Korndörfer, G. H., & Datnoff, L. E. (2010). Silicon suppresses Phytophthora blight development on bell pepper. Journal of Phytopathology, 158(7‐8), 554-560. DOI: 10.1111/j.1439-0434.2009.01665.x
Fry, S. C., Nesselrode, B. H. W. A., Miller, J. G., & Mewburn, B. R. (2008). Mixed linkage (1→3,1→4)-β-glucan is a major hemicellulose of Equisetum (horsetail) cell walls. New Phytologist 179, 104–115. doi: 10.1111/j.1469-8137.2008. 02435.x
Gao, X., Zou, C., Wang, L., & Zhang, F. (2005). Silicon improves water use efficiency in maize plants. Journal of plant nutrition, 27(8), 1457-1470. doi:10.1081/PLN-200025865 
Gao, X., Zou, C., Wang, L., & Zhang, F. (2006). Silicon decreases transpiration rate and conductance from stomata of maize plants. Journal of Plant Nutrition, 29(9), 1637-1647. doi:10.1080/01904160600851494 
Ghareeb, H., Bozsó, Z., Ott, P. G., Repenning, C., Stahl, F., & Wydra, K. (2011). Transcriptome of silicon-induced resistance against Ralstonia solanacearum in the silicon non-accumulator tomato implicates priming effect. Physiological and Molecular Plant Pathology, 75(3), 83-89. doi:10.1016/j.pmpp.2010.11.004 
Gong, H. J., Randall, D. P., Flowers, T. J. (2006). Silicon deposition in the root reduces sodium uptake in rice (Oryza sativa L.) seedlings by reducing bypass flow. Plant, Cell and Environment, 29, 1970–1979. doi:10.1111/j.1365-3040.2006.01572.x 
Gong, H., & Chen, K. (2012). The regulatory role of silicon on water relations, photosynthetic gas exchange, and carboxylation activities of wheat leaves in field drought conditions. Acta Physiologiae Plantarum, 34(4), 1589-1594. doi:10.1007/s11738-012-0954-6 
Greger, M., Landberg, T., & Vaculík, M. (2018). Silicon influences soil availability and accumulation of mineral nutrients in various plant species. Plants, 7(2), 41. https://doi.org/10.3390/plants7020041
Guerriero, G., Hausman, J. F., & Legay, S. (2016). Silicon and the plant extracellular matrix. Frontiers in Plant Science, 7, 463. doi:10.3389/fpls.2016.00463
Gui, Y. W., Sheteiwy, M. S., Zhu, S. G., Batool, A., & Xiong, Y. C. (2021). Differentiate effects of non-hydraulic and hydraulic root signaling on yield and water use efficiency in diploid and tetraploid wheat under drought stress. Environmental and Experimental Botany, 181, 104287. https://doi.org/10.1016/j.envexpbot.2020.104287
Gulzar, N., Ali, S., Shah, M. A., & Kamili, A. N. (2021). Silicon supplementation improves early blight resistance in Lycopersicon esculentum Mill. by modulating the expression of defense-related genes and antioxidant enzymes. 3 Biotech, 11(5), 1-13. https://doi.org/10.1007/s13205-021-02789-6
Guntzer, F., Keller, C., & Meunier, J. D. (2012). Benefits of plant silicon for crops: a review. Agronomy for Sustainable Development, 32(1), 201-213. doi:10.1007/s13593-011-0039-8 
Haghighi, T. M., & Saharkhiz, M. J. (2022). Mycorrhizal colonization and silicon nutrition mitigates drought stress in Licorice (Glycyrrhiza glabra L.) with morphophysiological and biochemical perspectives. Industrial Crops and Products, 178, 114650. https://doi.org/10.1016/j.indcrop.2022.114650
Halligan, J. E. (2013). Soil Fertility and Fertilizers. Reprint. Forgotten Books, London, pp. 4–5.
Hammond, K. E., Evans, D. E., & Hodson, M. J. (1995). Aluminium/silicon interactions in barley (Hordeum vulgare L.) seedlings. Plant and soil, 173(1), 89-95.
Hasegawa, P. M., Bressan, R. A., Zhu, J. K., & Bohnert, H. J. (2000). Plant cellular and molecular responses to high salinity. Annual review of plant biology, 51(1), 463-499. doi:10.1146/annurev.arplant.51.1.463 
Hattori, T., Sonobe, K., Araki, H., Inanaga, S., An, P., & Morita, S. (2008). Silicon application by sorghum through the alleviation of stress-induced increase in hydraulic resistance. Journal of Plant Nutrition, 31(8), 1482-1495. doi:10.1080/01904160802208477 
He, C., Ma, J., & Wang, L. (2015). A hemicellulose-bound form of silicon with potential to improve the mechanical properties and regeneration of the cell wall of rice. New Phytologist, 206(3), 1051-1062. doi:10.1111/nph.13282 
He, C., Wang, L., Liu, J., Liu, X., Li, X., Ma, J., Lin, Y. & Xu, F., 2013. Evidence for ‘silicon’ within the cell walls of suspension‐cultured rice cells. New Phytologist, 200(3), pp.700-709. doi:10.1111/nph.12401 
Hodson, M. J., & Sangster, A. G. (1990). Techniques for the microanalysis of higher plants with particular reference to silicon in cryofixed wheat tissues. Scanning Microscopy, 4(2), 20.
Huang, C. H., Roberts, P. D., & Datnoff, L. E. (2011). Silicon suppresses Fusarium crown and root rot of tomato. Journal of Phytopathology, 159(7‐8), 546-554. doi:10.1111/j.1439-0434.2011.01803.x 
Hurtado, A. C., Chiconato, D. A., de Mello Prado, R., da Silveira Sousa Junior, G., Viciedo, D. O., Díaz, Y. P., Calzada, K.P., & Gratão, P. L. (2020). Silicon alleviates sodium toxicity in Sorghum and sunflower plants by enhancing ionic homeostasis in roots and shoots and increasing dry matter accumulation. Silicon, 13(2), 475-486. https://doi.org/10.1007/s12633-020-00449-7
Hussain, I., Ashraf, M. A., Rasheed, R., Asghar, A., Sajid, M. A., & Iqbal, M. (2015). Exogenous application of silicon at the boot stage decreases accumulation of cadmium in wheat (Triticum aestivum L.) grains. Brazilian Journal of Botany, 38(2), 223-234. doi:10.1007/s40415-014-0126-6 
Hussain, S., Shuxian, L., Mumtaz, M., Shafiq, I., Iqbal, N., Brestic, M., Shoaib, M., Sisi, Q., Li, W., Mei, X., & Wenyu, Y. (2021). Foliar application of silicon improves stem strength under low light stress by regulating lignin biosynthesis genes in soybean (Glycine max (L.) Merr.). Journal of hazardous materials, 401, 123256. https://doi.org/10.1016/j.jhazmat.2020.123256
Imtiaz, M., Rizwan, M. S., Mushtaq, M. A., Ashraf, M., Shahzad, S. M., Yousaf, B., Saeed, D.A., Rizwan, M., Nawaz, M.A., Mehmood, S. & Tu, S. (2016). Silicon occurrence, uptake, transport and mechanisms of heavy metals, minerals and salinity enhanced tolerance in plants with future prospects: a review. Journal of environmental management, 183, 521-529. https://doi.org/10.1016/j.jenvman.2016.09.009
Inanaga, S., & Okasaka, A. (1995). Calcium and silicon binding compounds in cell walls of rice shoots. Soil Science and Plant Nutrition, 41(1), 103-110. doi:10.1080/00380768.1995.10419563 
Iwasaki, K., Maier, P., Fecht, M., & Horst, W. J. (2002b). Leaf apoplastic silicon enhances manganese tolerance of cowpea (Vigna unguiculata). Journal of Plant Physiology, 159(2), 167-173. doi:10.1078/0176-1617-00691 
Jiang, N., Fan, X., Lin, W., Wang, G., & Cai, K. (2019). Transcriptome analysis reveals new insights into the bacterial wilt resistance mechanism mediated by silicon in tomato. International journal of molecular sciences, 20(3), 761. doi:10.3390/ijms20030761 
Jones, L. H. P., & Handreck, K. A. (1965). Studies of silica in the oat plant. Plant and soil, 23(1), 79-96.
Jones, L. H. P., & Handreck, K. A. (1967). Silica in soils, plants, and animals. In Advances in agronomy (Vol. 19, pp. 107-149). Academic Press. doi:10.1016/s0065-2113(08)60734-8 
Kapilan, R., Vaziri, M., & Zwiazek, J. J. (2018). Regulation of aquaporins in plants under stress. Biological research, 51(1), 1-11. https://doi.org/10.1186/s40659-018-0152-0
Kaur, H., & Greger, M. (2019). A review on Si uptake and transport system. Plants, 8(4), 81. https://doi.org/10.3390/plants8040081
Keller, C., Rizwan, M., Davidian, J. C., Pokrovsky, O. S., Bovet, N., Chaurand, P., & Meunier, J. D. (2015). Effect of silicon on wheat seedlings (Triticum turgidum L.) grown in hydroponics and exposed to 0 to 30 µM Cu. Planta, 241(4), 847-860. doi:10.1007/s00425-014-2220-1 
Khalid, R. A., & Silva, J. A. (1980). Residual effect of calcium silicate on Ph, phosphorus, and aluminum in a tropical soil profile. Soil Science and Plant Nutrition, 26(1), 87-98. doi:10.1080/00380768.1980.10433215 
Kido, N., Yokoyama, R., Yamamoto, T., Furukawa, J., Iwai, H., Satoh, S., & Nishitani, K. (2015). The matrix polysaccharide (1; 3, 1; 4)-β-D-glucan is involved in silicon-dependent strengthening of rice cell wall. Plant and Cell Physiology, 56(2), 268-276. doi:10.1093/pcp/pcu162 
Kim, S. G., Kim, K. W., Park, E. W., & Choi, D. (2002). Silicon-induced cell wall fortification of rice leaves: a possible cellular mechanism of enhanced host resistance to blast. Phytopathology, 92(10), 1095-1103. doi:10.1094/phyto.2002.92.10.1095 
Knight, C. T., & Kinrade, S. D. (2001). A primer on the aqueous chemistry of silicon. In Studies in plant science (Vol. 8, pp. 57-84). Elsevier.
Knipfer, T., Danjou, M., Vionne, C., & Fricke, W. (2021). Salt stress reduces root water uptake in barley (Hordeum vulgare L.) through modification of the transcellular transport path. Plant, Cell & Environment, 44(2), 458-475. https://doi.org/10.1111/pce.13936
Krishnamurthy, P., Ranathunge, K., Franke, R., Prakash, H. S., Schreiber, L., & Mathew, M. K. (2009). The role of root apoplastic transport barriers in salt tolerance of rice (Oryza sativa L.). Planta, 230(1), 119-134. doi:10.1007/s00425-009-0930-6 
Krishnamurthy, P., Ranathunge, K., Nayak, S., Schreiber, L., & Mathew, M. K. (2011). Root apoplastic barriers block Na+ transport to shoots in rice (Oryza sativa L.). Journal of experimental botany, 62(12), 4215-4228. doi:10.1093/jxb/err135 
Kronzucker, H. J., Coskun, D., Schulze, L. M., Wong, J. R., & Britto, D. T. (2013). Sodium as nutrient and toxicant. Plant Soil 369, 1–23. doi: 10.1007/s11104-013- 1801-2
Kumawat, S., Khatri, P., Ahmed, A., Vats, S., Kumar, V., Jaswal, R., Wang, Y., Xu, P., Mandlik, R., Shivaraj, S.M., & Deshmukh, R. (2021). Understanding aquaporin transport system, silicon and other metalloids uptake and deposition in bottle gourd (Lagenaria siceraria). Journal of Hazardous Materials, 409, 124598. https://doi.org/10.1016/j.jhazmat.2020.124598
Laruelle, G. G., Roubeix, V., Sferratore, A., Brodherr, B., Ciuffa, D., Conley, D. J., Dürr, H. H., Garnier, J., Lancelot, C., Le Thi Phuong, Q., & Meunier, J. D. (2009). Anthropogenic perturbations of the silicon cycle at the global scale: Key role of the land‐ocean transition. Global biogeochemical cycles, 23(4). doi:10.1029/2008gb003267 
Law, C., & Exley, C. (2011). New insight into silica deposition in horsetail (Equisetum arvense). BMC plant biology, 11(1), 1-9. doi:10.1186/1471-2229-11-112 
Lee, C. W., Borne, A., Ferain, I., Afzalian, A., Yan, R., Akhavan, N. D., Razavi, P. and Colinge, J. P. (2010). High-temperature performance of silicon junctionless MOSFETs. IEEE transactions on electron devices, 57(3), pp.620-625. doi:10.1109/ted.2009.2039093 
Li, Q. F., Ma, C. C., & Shang, Q. L. (2007). Effects of silicon on photosynthesis and antioxidative enzymes of maize under drought stress. Ying yong sheng tai xue bao= The journal of applied ecology, 18(3), 531-536.
Li, Z., Song, Z., & Cornelis, J. T. (2014). Impact of rice cultivar and organ on elemental composition of phytoliths and the release of bio-available silicon. Frontiers in plant science, 5, 529. doi:10.3389/fpls.2014.00529 
Liang, Y. C., Sun, W. C., Si, J., & Römheld, V. (2005). Effects of foliar‐and root‐applied silicon on the enhancement of induced resistance to powdery mildew in Cucumis sativus. Plant Pathology, 54(5), 678-685. doi:10.1111/j.1365-3059.2005.01246.x 
Liang, Y., Sun, W., Zhu, Y. G., & Christie, P. (2007). Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review. Environmental pollution, 147(2), 422-428. doi:10.1016/j.envpol.2006.06.008 
Liang, Y., Zhang, W., Chen, Q., & Ding, R. (2005b). Effects of silicon on H+-ATPase and H+-PPase activity, fatty acid composition and fluidity of tonoplast vesicles from roots of salt-stressed barley (Hordeum vulgare L.). Environmental and Experimental Botany, 53(1), 29-37. doi:10.1016/j.envexpbot.2004.02.010 
Liu, P., Yin, L., Deng, X., Wang, S., Tanaka, K., & Zhang, S. (2014). Aquaporin-mediated increase in root hydraulic conductance is involved in silicon-induced improved root water uptake under osmotic stress in Sorghum bicolor L. Journal of experimental botany, 65(17), 4747-4756. doi:10.1093/jxb/eru220 
Liu, P., Yin, L., Wang, S., Zhang, M., Deng, X., Zhang, S., & Tanaka, K. (2015). Enhanced root hydraulic conductance by aquaporin regulation accounts for silicon alleviated salt-induced osmotic stress in Sorghum bicolor L. Environmental and Experimental Botany, 111, 42-51. doi:10.1016/j.envexpbot.2014.10.006 
López-Pérez, M. C., Pérez-Labrada, F., Ramírez-Pérez, L. J., Juárez-Maldonado, A., Morales-Díaz, A. B., González-Morales, S., García-Dávila, L.R., García-Mata, J. & Benavides-Mendoza, A. (2018). Dynamic modeling of silicon bioavailability, uptake, transport, and accumulation: applicability in improving the nutritional quality of tomato. Frontiers in plant science, 9, 647. doi:10.3389/fpls.2018.00647 
Lumsdon, D. G., & Farmer, V. C. (1995). Solubility characteristics of proto‐imogolite sols: how silicic acid can de‐toxify aluminium solutions. European Journal of Soil Science, 46(2), 179-186. doi:10.1111/j.1365-2389.1995.tb01825.x 
Lux, A., Luxová, M., Abe, J., Tanimoto, E., Hattori, T., & Inanaga, S. (2003). The dynamics of silicon deposition in the sorghum root endodermis. New Phytologist, 158(3), 437-441. doi:10.1046/j.1469-8137.2003.00764.x 
Lux, A., Luxová, M., Morita, S., Abe, J., & Inanaga, S. (1999). Endodermal silicification in developing seminal roots of lowland and upland cultivars of rice (Oryza sativa L.). Canadian Journal of Botany, 77(7), 955-960. doi:10.1139/b99-043
Luyckx, M., Hausman, J. F., Lutts, S., & Guerriero, G. (2017). Silicon and plants: current knowledge and technological perspectives. Frontiers in Plant Science, 8, 411. https://doi.org/10.3389/fpls.2017.00411
Ma J.F. (2013) Silicon Transporters. In: Kretsinger R. H., Uversky V. N., Permyakov E. A. (eds) Encyclopedia of Metalloproteins. Springer, New York, N Y. https://doi.org/10.1007/978-1-4614-1533-6_494
Ma, J. F. (2004). Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil science and plant nutrition, 50(1), 11-18. doi:10.1080/00380768.2004.10408447 
Ma, J. F., & Takahashi, E. (1993). Interaction between calcium and silicon in water-cultured rice plants. Plant Soil 148, 107–113. doi: 10.1007/BF02185390
Ma, J. F., & Takahashi, E. (2002). Soil, fertilizer, and plant silicon research in Japan. Elsevier.
Ma, J. F., & Yamaji, N. (2006). Silicon uptake and accumulation in higher plants. Trends in plant science, 11(8), 392-397. doi:10.1016/j.tplants.2006.06.007 
Ma, J. F., & Yamaji, N. (2008). Functions and transport of silicon in plants. Cellular and molecular life sciences, 65(19), 3049-3057.  doi:10.1007/s00018-008-7580-x 
Ma, J. F., & Yamaji, N. (2015). A cooperative system of silicon transport in plants. Trends in Plant Science, 20(7), 435-442. doi:10.1016/j.tplants.2015.04.007 
Ma, J. F., Goto, S., Tamai, K., & Ichii, M. (2001). Role of root hairs and lateral roots in silicon uptake by rice. Plant physiology, 127(4), 1773-1780. doi:10.2307/4280246 
Ma, J. F., Mitani, N., Nagao, S., Konishi, S., Tamai, K., Iwashita, T., & Yano, M. (2004). Characterization of the silicon uptake system and molecular mapping of the silicon transporter gene in rice. Plant physiology, 136(2), 3284-3289. doi:10.2307/4356677 
Ma, J. F., Tamai, K., Yamaji, N., Mitani, N., Konishi, S., Katsuhara, M., Ishiguro, M., Murata, Y. and Yano, M. (2006). A silicon transporter in rice. Nature, 440(7084), 688-691.
Ma, J. F., Yamaji, N., Mitani, N., Tamai, K., Konishi, S., Fujiwara, T., Katsuhara, M. & Yano, M. (2007). An efflux transporter of silicon in rice. Nature, 448(7150), pp.209-212. doi:10.1038/nature05964 
Ma, J., Cai, H., He, C., Zhang, W., & Wang, L. (2015). A hemicellulose-bound form of silicon inhibits cadmium ion uptake in rice (Oryza sativa) cells. New Phytologist, 206, 1063–1074. doi: 10.1111/nph.13276.
Maathuis, F. J., Ahmad, I., & Patishtan, J. (2014). Regulation of Na+ fluxes in plants. Frontiers in plant science, 5, 467.
Matichenkov, V. V., & Bocharnikova, E. A. (2001). The relationship between silicon and soil physical and chemical properties. In Studies in Plant Science (Vol. 8, pp. 209-219). Elsevier.
Matichenkov, V. V., Ammosova, Y. M., & Bocharnikova, E. A. (1997). The method for determination of plant available silica in soil. Agrochem, 1, 76-84.
Matychenkov, V. V., & Ammosova, Y. M. (1996a). Effect of amorphous silica on some properties of a sod-podzolic soil. Eurasian Soil Science, 28(10), 87-99.
Matychenkov, V. V., & Snyder, G. S. (1996b). Mobile silicon-bound compounds in some soils of Southern Florida. Eurasian soil science, 29(12), 1350-1354.
McKeague, J. A., & Cline, M. G. (1963). Silica in soil solutions: I. The form and concentration of dissolved silica in aqueous extracts of some soils. Canadian Journal of Soil Science, 43(1), 70-82. doi:10.4141/cjss63-010 
Meunier, J. D., Barboni, D., Anwar‐ul‐Haq, M., Levard, C., Chaurand, P., Vidal, V., Grauby, O., Huc, R., Laffont‐Schwob, I., Rabier, J. & Keller, C. (2017). Effect of phytoliths for mitigating water stress in durum wheat. New Phytologist, 215(1), 229-239.  https://doi.org/10.1111/nph.14554
Ming, D. F., Pei, Z. F., Naeem, M. S., Gong, H. J., & Zhou, W. J. (2012). Silicon alleviates PEG‐induced water‐deficit stress in upland rice seedlings by enhancing osmotic adjustment. Journal of Agronomy and Crop Science, 198(1), 14-26. doi:10.1111/j.1439-037x.2011.00486.x 
Mitani, N., & Ma, J. F. (2005). Uptake system of silicon in different plant species. Journal of experimental botany, 56(414), 1255-1261.
Mitani, N., Chiba, Y., Yamaji, N., & Ma, J. F. (2009a). Identification and characterization of maize and barley Lsi2-like silicon efflux transporters reveals a distinct silicon uptake system from that in rice. The Plant Cell, 21(7), 2133-2142. doi:10.1105/tpc.109.067884 
Mitani, N., Yamaji, N., & Ma, J. F. (2009b). Identification of maize silicon influx transporters. Plant and Cell Physiology, 50(1), 5-12. doi:10.1093/pcp/pcn110 
Mitani-Ueno, N., & Ma, J. F. (2021). Linking transport system of silicon with its accumulation in different plant species. Soil Science and Plant Nutrition, 67(1), 10-17. https://doi.org/10.1080/00380768.2020.1845972
Mitani-Ueno, N., Yamaji, N., & Ma, J. F. (2011). Silicon efflux transporters isolated from two pumpkin cultivars contrasting in Si uptake. Plant Signaling & Behaviour, 6(7), 991-994. doi:10.4161/psb.6.7.15462 
Monger, H. C., & Kelly, E. F. (2002). Silica minerals. In: Soil Mineralogy With Environmental Applications. Soil Science Society of America, Madison, USA, pp. 611–636.
Montpetit, J., Vivancos, J., Mitani-Ueno, N., Yamaji, N., Rémus-Borel, W., Belzile, F., Ma, J. F. & Bélanger, R. R. (2012). Cloning, functional characterization and heterologous expression of TaLsi1, a wheat silicon transporter gene. Plant molecular biology, 79(1), 35-46. doi:10.1007/s11103-012-9892-3 
Muneer, S., & Jeong, B. R. (2015). Proteomic analysis of salt-stress responsive proteins in roots of tomato (Lycopersicon esculentum L.) plants towards silicon efficiency. Plant growth regulation, 77(2), 133-146. doi:10.1007/s10725-015-0045-y 
Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology 59, 651–681. doi: 10.1146/annurev.arplant.59.032607. 092911
Naeem, A., Ghafoor, A., & Farooq, M. (2015). Suppression of cadmium concentration in wheat grains by silicon is related to its application rate and cadmium accumulating abilities of cultivars. Journal of the Science of Food and Agriculture, 95(12), 2467-2472. doi:10.1002/jsfa.6976 
Nascimento, C. W. A. D., & Xing, B. (2006). Phytoextraction: a review on enhanced metal availability and plant accumulation. Scientia agricola, 63(3), 299-311.  doi:10.1590/S0103-90162006000300014 
Nayyar, H., & Walia, D. P. (2003). Water stress induced proline accumulation in contrasting wheat genotypes as affected by calcium and abscisic acid. Biologia Plantarum, 46(2), 275-279.
Norton, L. D., Hall, G. F., Smeck, N. E., & Bigham, J. M. (1984). Fragipan bonding in a Late‐Wisconsinan loess‐derived soil in east‐central Ohio. Soil Science Society of America Journal, 48(6), 1360-1366. doi:10.2136/sssaj1984.0361599500480006003
Nowakowski, W., & Nowakowska, J. (1997). Silicon and copper interaction in the growth of spring wheat seedlings. Biologia Plantarum, 39(3), 463-466.
Nwugo, C. C., & Huerta, A. J. (2008). Silicon‐induced cadmium resistance in rice (Oryza sativa). Journal of plant nutrition and soil science, 171(6), 841-848. doi:10.1002/jpln.200800082 
Passamani, L. Z., Barbosa, R. R., Reis, R. S., Heringer, A. S., Rangel, P. L., Santa-Catarina, C., Grativol, C., Veiga, C. F., Souza-Filho, G. A. & Silveira, V. (2017). Salt stress induces changes in the proteomic profile of micropropagated sugarcane shoots. PLoS One, 12(4), p.e0176076. doi:10.1371/journal.pone.0176076
Pei, Z. F., Ming, D. F., Liu, D., Wan, G. L., Geng, X. X., Gong, H. J., & Zhou, W. J. (2010). Silicon improves the tolerance to water-deficit stress induced by polyethylene glycol in wheat (Triticum aestivum L.) seedlings. Journal of plant growth regulation, 29(1), 106-115. doi:10.1007/s00344-009-9120-9 
Pooja., Sharma, A., Sharma J., & Vikram. (2021). Silicon- An emerging approach to agriculture. In book: Recent Approaches in Sustainable Agriculture Development and Food Security, Crop Management, Forestry, Food Technology and Environmentally Balanced Production Enhancement. Publisher: Mahima Research Foundation and Social Welfare 194, Karaundi, Banaras Hindu University. 333-338.
Puppe, D. (2020). Review on protozoic silica and its role in silicon cycling. Geoderma, 365, 114224. doi:10.1016/j.geoderma.2020.114224 
Rains, D. W., Epstein, E., Zasoski, R. J., & Aslam, M. (2006). Active silicon uptake by wheat. Plant and Soil, 280(1), 223-228.
Ranathunge, K., Steudle, E., & Lafitte, R. (2005). Blockage of apoplastic bypass‐flow of water in rice roots by insoluble salt precipitates analogous to a Pfeffer cell. Plant, Cell & Environment, 28(2), 121-133. doi:10.1111/j.1365-3040.2004.01245.x 
RAVEN, J. A. (1983). The transport and function of silicon in plants. Biological reviews, 58(2), 179-207. doi:10.1111/j.1469-185x.1983.tb00385.x 
Rémus-Borel, W., Menzies, J. G., & Bélanger, R. R. (2005). Silicon induces antifungal compounds in powdery mildew-infected wheat. Physiological and molecular plant pathology, 66(3), 108-115. doi:10.1016/j.pmpp.2005.05.006 
Richmond, K. E., & Sussman, M. (2003). Got silicon? The non-essential beneficial plant nutrient. Current opinion in plant biology, 6(3), 268-272. doi:10.1016/s1369-5266(03)00041-4 
Rizwan, M., Ali, S., Ibrahim, M., Farid, M., Adrees, M., Bharwana, S. A., Zia-ur-Rehman, M., Qayyum, M. F. & Abbas, F. (2015). Mechanisms of silicon-mediated alleviation of drought and salt stress in plants: a review. Environmental Science and Pollution Research, 22(20), 15416-15431. doi:10.1007/s11356-015-5305-x 
Rodrigues, F. Á., Benhamou, N., Datnoff, L. E., Jones, J. B., & Bélanger, R. R. (2003). Ultrastructural and cytochemical aspects of silicon-mediated rice blast resistance. Phytopathology, 93(5), 535-546. doi:10.1094/phyto.2003.93.5.535 
Rodrigues, F. A., Dallagnol, L. J., Duarte, H. S. S., & Datnoff, L. E. (2015). Silicon control of foliar diseases in monocots and dicots. In Silicon and plant diseases (pp. 67-108). Springer, Cham. doi:10.1007/978-3-319-22930-0_4 
Rodrigues, F. Á., McNally, D. J., Datnoff, L. E., Jones, J. B., Labbé, C., Benhamou, N., Menzies, J. G. & Bélanger, R. R. (2004). Silicon enhances the accumulation of diterpenoid phytoalexins in rice: a potential mechanism for blast resistance. Phytopathology, 94(2), pp.177-183. doi:10.1094/phyto.2004.94.2.177 
Rogalla, H., & Römheld, V. (2002). Role of leaf apoplast in silicon‐mediated manganese tolerance of Cucumis sativus L. Plant, Cell & Environment, 25(4), 549-555. doi:10.1046/j.1365-3040.2002.00835.x 
Romero-Aranda, M. R., Jurado, O., & Cuartero, J. (2006). Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status. Journal of Plant Physiology, 163, 847–855. doi: 10.1016/j.jplph.2005.05.010
Sangster, A. G., Hodson, M. J., & Tubb, H. J. (2001). Silicon deposition in higher plants. In Studies in plant science, (Vol. 8, pp. 85-113). Elsevier.
Saqib, M., Zoerb, C., & Schubert, S. (2008). Silicon-mediated improvement in the salt resistance of wheat (Triticum aestivum) results from increased sodium exclusion and resistance to oxidative stress. Functional Plant Biology, 35, 633–639. doi: 10.1071/FP08100.
Sauer, D., Saccone, L., Conley, D. J., Herrmann, L., & Sommer, M. (2006). Review of methodologies for extracting plant-available and amorphous Si from soils and aquatic sediments. Biogeochemistry, 80(1), 89-108. doi:10.1007/s10533-005-5879-3 
Schaller, J., Puppe, D., Kaczorek, D., Ellerbrock, R., & Sommer, M. (2021). Silicon cycling in soils revisited. Plants, 10(2), 295. doi:10.3390/plants10020295 
Seyfferth, A. L., & Fendorf, S. (2012). Silicate mineral impacts on the uptake and storage of arsenic and plant nutrients in rice (Oryza sativa L.). Environmental Science & Technology, 46(24), 13176-13183. doi:10.1021/es30 25337 
Shen, X., Xiao, X., Dong, Z., & Chen, Y. (2014). Silicon effects on antioxidative enzymes and lipid peroxidation in leaves and roots of peanut under aluminum stress. Acta Physiologiae Plantarum, 36(11), 3063-3069. doi:10.1007/s11738-014-1676-8 
Shi, Y., Wang, Y. C., Flowers, T. J., & Gong, H. J. (2013). Silicon decreases chloride transport in rice (Oryza sativa L.) in saline conditions. Journal of Plant Physiology, 170, 847–853. doi: 10.1016/j.jplph.2013.01.018
Shi, Y., Zhang, Y., Han, W., Feng, R., Hu, Y., Guo, J., & Gong, H. (2016). Silicon enhances water stress tolerance by improving root hydraulic conductance in Solanum lycopersicum L. Frontiers in Plant Science, 7, 196. doi:10.3389/fpls.2016.00196 
Shivaraj, S. M., Deshmukh, R. K., Rai, R., Bélanger, R., Agrawal, P. K., & Dash, P. K. (2017b). Genome-wide identification, characterization, and expression profile of aquaporin gene family in flax (Linum usitatissimum). Scientific reports, 7(1), 1-17. doi:10.1038/srep46137 
Shivaraj, S. M., Deshmukh, R., Bhat, J. A., Sonah, H., & Bélanger, R. R. (2017a). Understanding aquaporin transport system in eelgrass (Zostera marina L.), an aquatic plant species. Frontiers in plant science, 8, 1334. doi:10.3389/fpls.2017.01334 
Siddique, M. R. B., Hamid, A. I. M. S., & Islam, M. S. (2000). Drought stress effects on water relations of wheat. Botanical Bulletin of Academia Sinica, 41.
Singh, V. P., Tripathi, D. K., Kumar, D., & Chauhan, D. K. (2011). Influence of exogenous silicon addition on aluminium tolerance in rice seedlings. Biological Trace Element Research, 144(1), 1260-1274. doi:10.1007/s12011-011-9118-6 
Sirisuntornlak, N., Ullah, H., Sonjaroon, W., Anusontpornperm, S., Arirob, W., & Datta, A. (2021). Interactive effects of silicon and soil pH on growth, yield and nutrient uptake of maize. Silicon, 13(2), 289-299.
Snyder G. H., Martichenkov, V. V., & Datnoff, L. E. (2007). Silicone. In: Handbook of Plant Nutrition. Barker, A. V., & Pilbean, D. J. (eds.). CRC Taylor and Francis, New York, USA, pp. 551–568.
Sommer, M., Kaczorek, D., Kuzyakov, Y., & Breuer, J. (2006). Silicon pools and fluxes in soils and landscapes—a review. Journal of Plant Nutrition and Soil Science, 169(3), 310-329. doi:10.1002/jpln.200690016 
Song, X. P., Verma, K. K., Tian, D. D., Zhang, X. Q., Liang, Y. J., Huang, X., Li, C.N., & Li, Y. R. (2021). Exploration of silicon functions to integrate with biotic stress tolerance and crop improvement. Biological Research, 54.http://dx.doi.org/10.1186/s40659-021-003
44-4 
Sonobe, K., Hattori, T., An, P., Tsuji, W., Eneji, A. E., Kobayashi, S., Kawamura, Y., Tanaka, K. & Inanaga, S. (2010). Effect of silicon application on sorghum root responses to water stress. Journal of Plant Nutrition, 34(1), pp.71-82. doi:10.1080/01904167.2011.531360 
Sonobe, K., Hattori, T., An, P., Tsuji, W., Eneji, E., Tanaka, K., & Inanaga, S. (2009). Diurnal variations in photosynthesis, stomatal conductance and leaf water relation in sorghum grown with or without silicon under water stress. Journal of plant nutrition, 32(3), 433-442. doi:10.1080/01904160802660743 
Soukup, M., Rodriguez Zancajo, V. M., Kneipp, J., & Elbaum, R. (2020). Formation of root silica aggregates in sorghum is an active process of the endodermis. Journal of Experimental Botany, 71(21), 6807-6817. doi:10.1093/jxb/erz387
Soundararajan, P., Manivannan, A., Cho, Y. S., & Jeong, B. R. (2017). Exogenous supplementation of silicon improved the recovery of hyperhydric shoots in Dianthus caryophyllus L. by stabilizing the physiology and protein expression. Frontiers in plant science, 8, 738. doi:10.3389/fpls.2017.00738 
Souri, Z., Khanna, K., Karimi, N., & Ahmad, P. (2021). Silicon and plants: current knowledge and future prospects. Journal of Plant Growth Regulation, 40(3), 906-925. https://doi.org/10.1007/s00344-020-10172-7
Strange, R. N., & Scott, P. R. (2005). Plant disease: a threat to global food security. Annual Review of Phytopathology, 43, 83-116. doi:10.1146/annurev.phyto.43.11 3004.133839 
Sun, H., Duan, Y., Mitani‐Ueno, N., Che, J., Jia, J., Liu, J., Guo, J., Ma, J.F., & Gong, H. (2020). Tomato roots have a functional silicon influx transporter but not a functional silicon efflux transporter. Plant, cell & environment, 43(3), 732-744. https://doi.org/10.1111/pce.13679
Suzuki, S., Ma, J. F., Yamamoto, N., Hattori, T., Sakamoto, M., & Umezawa, T. (2012). Silicon deficiency promotes lignin accumulation in rice. Plant Biotechnology, 29(4), 391-394. doi:10.5511/plantbiotechnology.1 2.0416a 
Trembath-Reichert, E., Wilson, J. P., McGlynn, S. E., & Fischer, W. W. (2015). Four hundred million years of silica biomineralization in land plants. Proceedings of the National Academy of Sciences, 112(17), 5449-5454. doi:10.1073/pnas.1500289112 
Tripathi, D. K., Vishwakarma, K., Singh, V. P., Prakash, V., Sharma, S., Muneer, S., Nikolic, M., Deshmukh, R., Vaculík, M. & Corpas, F. J. (2021). Silicon crosstalk with reactive oxygen species, phytohormones and other signaling molecules. Journal of Hazardous Materials, 408, 124820. https://doi.org/10.1016/j.jhazmat.2020.124820
Tubana, B. S., Babu, T., & Datnoff, L. E. (2016). A review of silicon in soils and plants and its role in US agriculture: history and future perspectives. Soil Science, 181(9/10), 393-411. doi:10.1097/SS.0000000000000179 
Tubana, B. T., & Heckman, J. R. (2015). Silicon in soils and plants. In: Silicon and Plant Disease. Rodrigues F. A., & Datnoff, L. E. (eds.). Springer International Publishing, Switzerland, pp. 7–5.
Treguer, P., Nelson, D. M., Van Bennekom, A. J., DeMaster, D. J., Leynaert, A., & Quéguiner, B. (1995). The silica balance in the world ocean: a reestimate. Science, 268(5209), 375-379. doi:10.1126/science.268.5209.375 
Tuna, A. L., Kaya, C., Higgs, D., Murillo-Amador, B., Aydemir, S., & Girgin, A. R. (2008). Silicon improves salinity tolerance in wheat plants. Environmental and Experimental Botany, 62(1), 10-16. doi:10.1016/j.envexpbot.2007.06.006 
Vasanthi, N., Chandrasekeran, D., & Raj, S. A. (2012). Phytosil as an alternative carrier to talc for biocontrol agents. In Proc. Natl. Symp. Recent Adv. Bioinoculatns Techn. Agricultural College & Research Institute, Madurai.
Vasanthi, N., Saleena, L. M., & Raj, S. A. (2012a). Silicon in day today life. World Applied Science Journal, 17(11), 1425-1440.
Vats, S., Sudhakaran, S., Bhardwaj, A., Mandlik, R., Sharma, Y., Kumar, S., Tripathi, D.K., Sonah, H., Sharma, T.R., & Deshmukh, R. (2021). Targeting aquaporins to alleviate hazardous metal (loid) s imposed stress in plants. Journal of Hazardous Materials, 408, 124910. https://doi.org/10.1016/j.jhazmat.2020.124910
Vivancos, J., Deshmukh, R., Grégoire, C., Rémus-Borel, W., Belzile, F., & Bélanger, R. R. (2016). Identification and characterization of silicon efflux transporters in horsetail (Equisetum arvense). Journal of Plant Physiology, 200, 82–89. doi: 10.1016/j.jplph.2016.06.011
Vivancos, J., Labbé, C., Menzies, J. G., & Bélanger, R. R. (2015). Silicon‐mediated resistance of A rabidopsis against powdery mildew involves mechanisms other than the salicylic acid (SA)‐dependent defence pathway. Molecular Plant Pathology, 16(6), 572-582.
Wang, B., Chu, C., Wei, H., Zhang, L., Ahmad, Z., Wu, S., & Xie, B. (2020). Ameliorative effects of silicon fertilizer on soil bacterial community and pakchoi (Brassica chinensis L.) grown on soil contaminated with multiple heavy metals. Environmental Pollution, 267, 115411. https://doi.org/10.1016/j.envpol.2020.115411
Wang, L., Ning, C., Pan, T., & Cai, K. (2022). Role of Silica Nanoparticles in Abiotic and Biotic Stress Tolerance in Plants: A Review. International Journal of Molecular Sciences, 23(4), 1947.  https://doi.org/10.3390/ijms23041947
Wang, M., Wang, R., Mur, L. A. J., Ruan, J., Shen, Q., & Guo, S. (2021). Functions of silicon in plant drought stress responses. Horticulture Research, 8. https://doi.org/10.1038/s41438-021-00681-1
Wang, Y. X., Stass, A., & Horst, W. J. (2004). Apoplastic binding of aluminum is involved in silicon-induced amelioration of aluminum toxicity in maize. Plant Physiology, 136, 3762–3770. doi: 10.1104/pp.104.045005.
Wedepohl, K. H. (1995). The composition of the continental crust. Geochimica et cosmochimica Acta, 59(7), 1217-1232.
Wilkins, M. R., Sanchez, J. C., Gooley, A. A., Appel, R. D., Humphery-Smith, I., Hochstrasser, D. F., & Williams, K. L. (1996). Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnology and genetic engineering reviews, 13(1), 19-50. doi:10.1080/02648725.1996.10647923 
Williams, L. A., & Crerar, D. A. (1985). Silica diagenesis; II, General mechanisms. Journal of Sedimentary Research, 55(3), 312-321. doi:10.1306/212f86b1-2b24-11d7-8648000102c1865d 
Wu, J., Mock, H. P., Giehl, R. F., Pitann, B., & Mühling, K. H. (2019). Silicon decreases cadmium concentrations by modulating root endodermal suberin development in wheat plants. Journal of Hazardous Materials, 364, 581-590. https://doi.org/10.1016/j.jhazmat.2018.10.052
Xiao, Z., Ye, M., Gao, Z., Jiang, Y., Zhang, X., Nikolic, N., & Liang, Y. (2022). Silicon Reduces Aluminum-Induced Suberization by Inhibiting the Uptake and Transport of Aluminum in Rice Roots and Consequently Promotes Root Growth. Plant and Cell Physiology. https://doi.org/10.1093/pcp/pcac001
Yadav, R., Flowers, T. J., & Yeo, A. R. (1996). The involvement of the transpirational bypass flow in sodium uptake by high- and low-sodium-transporting lines of rice developed through intravarietal selection. Plant, Cell and Environment 19, 329–336. doi:10.1111/j.1365-3040.1996.tb00255.x 
Yamaji, N., & Ma, J. F. (2007). Spatial distribution and temporal variation of the rice silicon transporter Lsi1. Plant Physiology, 143(3), 1306-1313. doi:10.1104/pp.106.093005 
Yamaji, N., & Ma, J. F. (2009). A transporter at the node responsible for intervascular transfer of silicon in rice. The Plant Cell, 21(9), 2878-2883. doi:10.1105/tpc.109.069831 
Yamaji, N., Mitani, N., & Ma, J. F. (2008). A transporter regulating silicon distribution in rice shoots. Plant Cell 20, 1381–1389. doi:10.1105/tpc.108.059311 
YAN, G. C., Nikolic, M., YE, M. J., XIAO, Z. X., & LIANG, Y. C. (2018). Silicon acquisition and accumulation in plant and its significance for agriculture. Journal of Integrative Agriculture, 17(10), 2138-2150. doi:10.1016/S2095-3119(18)62037-4 
Yeo, A. R., Flowers, S. A., Rao, G., Welfare, K., Senanayake, N., Flowers, T. J. (1999). Silicon reduces sodium uptake in rice (Oryza sativa L.) in saline conditions and this is accounted for by a reduction in the transpirational bypass flow. Plant, Cell and Environment 22, 559–565.  doi:10.1046/j.1365-3040.1999.00418.x 
Yoshida, S., Ohnishi, Y., & Kitagishi, K. (1962). Chemical forms, mobility and deposition of silicon in rice plant. Soil Science and Plant Nutrition, 8(3), 15-21. doi:10.1080/00380768.1962.10430992 
Zargar, S. M., Mahajan, R., Bhat, J. A., Nazir, M., & Deshmukh, R. (2019). Role of silicon in plant stress tolerance: opportunities to achieve a sustainable cropping system. 3 Biotech, 9(3), 1-16.  doi:10.1007/s13205-019-1613-z 
Zhang, G. L., Dai, Q. G., & Zhang, H. C. (2006). Silicon application enhances resistance to sheath blight (Rhizoctonia solani) in rice. Zhi wu sheng li yu fen zi sheng wu xue xue bao= Journal of plant physiology and molecular biology, 32(5), 600-606.
Zhao, K., Yang, Y., Peng, H., Zhang, L., Zhou, Y., Zhang, J., Du, C., Liu, J., Lin, X., Wang, N. and Huang, H., & Luo, L. (2022). Silicon fertilizers, humic acid and their impact on physicochemical properties, availability and distribution of heavy metals in soil and soil aggregates. Science of The Total Environment, 822, 153483. https://doi.org/10.1016/j.scitotenv.2022.153483
Zhao, Q., Zhang, H., Wang, T., Chen, S., & Dai, S. (2013). Proteomics-based investigation of salt-responsive mechanisms in plant roots. Journal of proteomics, 82, 230-253. doi:10.1016/j.jprot.2013.01.024 
Zhou, X., Shen, Y., Fu, X., & Wu, F. (2018). Application of sodium silicate enhances cucumber resistance to Fusarium wilt and alters soil microbial communities. Frontiers in plant science, 9, 624. https://doi.org/10.3389/fpls.2018.00624
Zhu, J. K. (2003). Regulation of ion homeostasis under salt stress. Current opinion in plant biology, 6(5), 441-445. doi:10.1016/s1369-5266(03)00085-2 
Zhu, Y. X., Jia, J. H., Yang, L., Xia, Y.C., Zhang, H. L., Jia, J. B., Zhou, R., Nie, P.Y., Yin, J. L., Ma, D. F. & Liu, L. C. (2019). Identification of cucumber circular RNAs responsive to salt stress. BMC Plant Biology, 19(1), pp.1-18. doi:10.1186/s12870-019-1712-3 
Zhu, Y. X., Xu, X. B., Hu, Y. H., Han, W. H., Yin, J. L., Li, H. L., & Gong, H. J. (2015). Silicon improves salt tolerance by increasing root water uptake in Cucumis sativus L. Plant Cell Reports, 34(9), 1629-1646. doi:10.1007/s00299-015-1814-9 
Zhu, Y., & Gong, H. (2014). Beneficial effects of silicon on salt and drought tolerance in plants. Agronomical Sustainable Development, 34, 455–472. doi:10.1007/s13593-013-0194-1 
Section
Research Articles

How to Cite

Importance of silicon in combating a variety of stresses in plants: A review. (2022). Journal of Applied and Natural Science, 14(2), 607-630. https://doi.org/10.31018/jans.v14i2.3426