Article Main

Nassima  DRAOU Samia GHARBI Nawel SELAMI Hassiba BOKHARI Hakima KEBAILI

Abstract

Cactus are among the most drought tolerant plants. As Opuntia is able to grow under the stress of drought, this study aims to check if endophytic bacteria isolated from cactus roots have beneficial potential for crops such as wheat during drought. Two endophytic bacterial isolates were isolated from the roots of the cactus and screened for their plant growth promoting characteristics, such as N-free growth and auxin production. These bacteria have demonstrated their potential to promote the growth of durum wheat under in-vitro conditions and have been identified as Pseudomonas putida and P.brassicacearum, following the sequencing of the 16S rRNA gene and phylogenetic analysis, and significantly improved growth parameters such as seeding length compared to the unobstructed control. After 05 days of contact of the two bacteria, P.putida and P.brassicacearum, with sprouted wheat seeds, a root growth rate of (39.88% and 62.14%, respectively) was recorded. The same effect on the growth of wheat roots is caused by the volatile substances of these bacteria deposited separately, with a rate of (53.30% and 24.18%) respectively. Symptoms of drought stress were visibly reduced on seedlings inoculated with P.putida and P.brassicacearum bacteria, a result supported by a growth rate of root parameters in length (260.83% and 179.60%), surface (21.98% and 60.17%) and scope (59.46% and 62.67%), respectively. This work opens up many perspectives for the characterization and selection of endophyte bacteria of under-used drought-tolerant species such as cacti for the improvement of the growth of field crops. These results promote the deployment of Pseudomonas sp as an effective biofertilizer in wheat.

Article Details

Article Details

Keywords

Endophytes, Opuntia ficus-indica L, Plant growth-promoting rhizobacteria, Drought, Pseudomonas, Wheat

References
Baranwal, G., Kumar, D., Raza, Z. & Vidyarthi, D. P. (2017). A systematic study of double auction mechanisms in cloud computing. Journal of Systems and Software, 125, 234-255.
Birouste, M., Zamora-Ledezma, E., Bossard, C., Ignacio M., Pérez, R.& Roumet, C. (2014), Measurement of fine root tissue density: a comparison of three methods reveals the potential of root dry matter content, Plant and Soil, 374,299–313
Comas, L., Becker, S., Cruz, V. M. V., Byrne, P. F. & Dierig, D. A. (2013). Root traits contributing to plant productivity under drought. Frontiers in plant science, 4, 442.
Compant, S., Clément, C., & Sessitsch, A. (2010). Plant growth-promoting bacteria in the rhizo-and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biology and Biochemistry, 42(5), 669-678.
Desrut, A., Moumen, B., Florence, T., Le Hir, R., Coutos-Thévenot, P. & Vriet, C., (2021), Beneficial rhizobacteria Pseudomonas simiae WCS417 induce major transcriptional changes in plant sugar transport. Journal of Experimental Botany, 71 (22), 7301–7315
Drogue, B., Doré, H., Borland, S., Wisniewski-Dyé, F. & Prigent-Combaret, C. (2012). Which specificity in cooperation between phytostimulating rhizobacteria and plants?. Research in microbiology, 163(8), 500-510.
Duca, D., Werbowetski, T. & Del Maestro, R. F. (2004). Spheroid preparation from hanging drops: characterization of a model of brain tumor invasion. Journal of neuro-oncology, 67(3), 295-303.
Fonseca-García, C., Coleman-Derr, D., Garrido, E., Visel, A., Tringe, S. G. & Partida-Martínez, L. P. (2016). The cacti microbiome: interplay between habitat-filtering and host-specificity. Frontiers in microbiology, 7, 150.
Govindasamy, V., George, P., Ramesh, S. V., Sureshkumar, P., Rane, J. & Minhas, P. S. (2022). Characterization of root-endophytic actinobacteria from cactus (Opuntia ficus-indica) for plant growth promoting traits. Archives of Microbiology, 204(2), 1-14.
Kasim, W. A., Osman, M. E., Omar, M. N., El-Daim, A., Islam, A., Bejai, S. & Meijer, J. (2013). Control of drought stress in wheat using plant-growth-promoting bacteria. Journal of Plant Growth Regulation, 32(1), 122-130.
Khalid, A., Arshad, M. & Zahir, Z. A. (2004). Screening plant growth‐promoting rhizobacteria for improving growth and yield of wheat. Journal of Applied Microbiology, 96(3), 473-480.. https://doi.org/10.1046/j.1365-2672.2003.02161.x.
Klopper, W., Quack, M. & Suhm, M. A. (1996). A new ab initio based six-dimensional semi-empirical pair interaction potential for HF. Chemical physics letters, 261(1-2), 35-44., https://doi.org/10.1016/0009-2614(96)00901-3.
Lata, C. & Prasad, M. (2011). Role of DREBs in regulation of abiotic stress responses in plants. Journal of experimental botany, 62(14), 4731-4748.. https://doi.org/10.1093/jxb/err210
Ledger Thomas, Rojas Sandy, Timmermann Tania, Pinedo Ignacio, Poupin María J., Garrido Tatiana, Richter Pablo, Tamayo Javier, Donoso Raúl. (2016). Volatile-Mediated Effects Predominate in Paraburkholderia phytofirmans Growth Promotion and Salt Stress Tolerance of Arabidopsis thaliana. Frontiers in Microbiology, (7). DOI=10.3389/fmicb.2016.01838
Micheal, J. D., McWilliams, K. L., Borrego, E. J., Kolomiets, M. V., Niu, G., Pierson, E. A. & Jo, Y. K. (2019). Bioprospecting plant growth-promoting rhizobacteria that mitigate drought stress in grasses. Frontiers in microbiology, 2106.doi=10.3389/fmicb.2019.02106
Moutia, J. F. Y., Saumtally, S., Spaepen, S., & Vanderleyden, J. (2010). Plant growth promotion by Azospirillum sp. in sugarcane is influenced by genotype and drought stress. Plant and Soil, 337(1), 233-242.. https://doi.org/10.1007/s11104-010-0519-7
Naseem, H. & Bano, A. (2014). Role of plant growth-promoting rhizobacteria and their exopolysaccharide in drought tolerance of maize. Journal of Plant Interactions, 9(1), 689-701. DOI: 10.1080/17429145.2014.90 2125
Nefzaoui, A., Louhaichi, M. & Ben Salem, H. (2014). Cactus as a tool to mitigate drought and to combat desertification. Journal of Arid Land Studies, 24(1), 121-124.
Ngumbi, E. & Kloepper, J. (2016). Bacterial-mediated drought tolerance: current and future prospects. Applied Soil Ecology, 105, 109-125..doi: 10.1016/j.apsoil.2016.04.009
Patten, C. L. & Glick, B. R. (1996). Bacterial biosynthesis of indole-3-acetic acid. Canadian journal of microbiology, 42(3), 207-220.. https://doi.org/10.1139/m96-032
Rosenblueth, M., & Martínez-Romero, E. (2006). Bacterial endophytes and their interactions with hosts. Molecular plant-microbe interactions, 19(8), 827-837. https://doi.org/10.1094/MPMI-19-0827
Rodriguez, R. & Redman, R. (2008). More than 400 million years of evolution and some plants still can't make it on their own: plant stress tolerance via fungal symbiosis. Journal of experimental botany, 59(5), 1109-1114. https://doi.org/10.1093/jxb/erm342
Sandhya, V. Z. A. S., SK Z, A., Grover, M., Reddy, G. & Venkateswarlu, B. S. S. S. (2009). Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biology and fertility of soils, 46(1), 17-26.https://doi.org/10.1007/s00374-009-0401-z
Sandhya, V. S. K. Z., Ali, S. Z., Grover, M., Reddy, G. & Venkateswarlu, B. (2010). Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress. Plant Growth Regulation, 62(1), 21-30. https://doi.org/10.1007/s10725-010-9479-4
Saravanakumar, D., Kavino, M., Raguchander, T., Subbian, P. & Samiyappan, R. (2011). Plant growth promoting bacteria enhance water stress resistance in green gram plants. Acta physiologiae plantarum, 33(1), 203-209. https://doi.org/10.1007/s11738-010-0539-1
Singh, J. S. (2015). Plant–microbe interactions: A viable tool for agricultural sustainability Plant Microbes Symbiosis: Applied Facets, NK Arora (Ed.). Springer, New Delhi/Heidelberg/New York/Dordrecht/London (2015). 384 pp., ISBN: 9788132220671.
Srivastava, S., Chaudhry, V., Mishra, A., Chauhan, P. S., Rehman, A., Yadav, A., ... & Nautiyal, C. S. (2012). Gene expression profiling through microarray analysis in Arabidopsis thaliana colonized by Pseudomonas putida MTCC5279, a plant growth promoting rhizobacterium. Plant Signaling & Behavior, 7(2), 235-245. https://doi.org/10.4161/psb.18957
 Tiwari, P. & Singh, J. S. (2017). A plant growth promoting rhizospheric Pseudomonas aeruginosa strain inhibits seed germination in Triticum aestivum (L) and Zea mays (L). Microbiology Research, 8(2), 7233. https://doi.org/10.4081/mr.2017.7233
Tiwari, S., Lata, C., Chauhan, P. S. & Nautiyal, C. S. (2016). Pseudomonas putida attunes morphophysiological, biochemical and molecular responses in Cicer arietinum L. during drought stress and recovery. Plant Physiology and Biochemistry, 99, 108-117. doi: 10.1016/j.plaphy.2015.11.001
Vardharajula, S., Zulfikar Ali, S., Grover, M., Reddy, G. & Bandi, V. (2011). Drought-tolerant plant growth promoting Bacillus spp.: effect on growth, osmolytes, and antioxidant status of maize under drought stress. Journal of Plant Interactions, 6(1), 1-14. https://doi.org/10.1080/174 29145.2010.535178
Wahl, S., Ryser, P. & Edwards, P. J. (2001). Phenotypic plasticity of grass root anatomy in response to light intensity and nutrient supply. Annals of Botany, 88(6), 1071-1078.. https://doi.org/10.1006/anbo.2001.1551
Section
Research Articles

How to Cite

Effect of endophytic bacteria from Algerian prickly pear roots on wheat under drought stress . (2022). Journal of Applied and Natural Science, 14(2), 418-425. https://doi.org/10.31018/jans.v14i2.3422