Molecular detection of mexXY-oprM, mexPQ-opmE Efflux pumps in multi-drug resistant Pseudomonas aeruginosa isolates in patients referred to teaching hospitals in Babylon province, Iraq
Article Main
Abstract
One of the global health issues is antibiotic resistance in Pseudomonas aeruginosa, a causative agent of bacterial infections due to multidrug resistance (MDR), which may be mediated by efflux pumps' overexpression.The present study investigated the prevalence of mexXY-oprM, mexPQ-opmE genes as encoding agents of efflux pumps and the determination of antibiotic resistance rate in clinical isolates of P. aeruginosa.Different clinical specimens of infectious patients, such as wounds, urine, blood, discharge, and abscesses except for stool, were examined. Identification of the isolates was performed using Pseudomonas chromogenic agar. A selective medium for the isolation of P. aeruginosa, used to screen 79 isolates. The results were validated by Polymerase chain reaction (PCR) utilizing particular primer pairs for the 16S rDNA gene of Pseudomonas spp. for identification of the isolates after incubation at 37°C for 24 hours. According to Clinical and Laboratory Standards Institute (CLSI) (2021) recommendations, a microbial susceptibility test was performed using the Kirby–Bauer disk diffusion method. P. aeruginosa was extremely resistant to ceftazidime (93.6%) and cefepime (77.2 %). In contrast, imipenem (77.2%) and meropenem (67%) showed high sensitivity. Finally, mexXY-oprM, mexPQ-opmE genes were investigated by PCR technique. Molecular investigation revealed mexX 43%, mexY 51.89%, oprM 48.1%, mexP 36.70% mexQ 46.83% and opmE 51.89%. The present study concluded that mexXY-oprM and mexPQ-opmE may have a role in P. aeruginosa resistance to various antibiotics. Identifying resistant isolates and antibiotic monitoring programs is essential to prevent the spread of MDR isolates.
Article Details
Article Details
Antibiotic resistance, Efflux pump, mexXY-oprM, mexPQ-opmE, Psuedpmonas aeruginosa
Ghanbarzadeh Corehtash, Z., Khorshidi, A., Firoozeh, F., Akbari, H., & Mahmoudi Aznaveh, A. (2015 October). Biofilm formation and virulence factors among Pseudomonas aeruginosa isolated from burn patients. Jundishapur Journal of Microbiology, 8(10), e22345. https://doi.org/10.5812/jjm.22345, PubMed: 26587205
Tannous, E., Lipman, S., Tonna, A., Hector, E., Hussein, Z., Stein, M., & Reisfeld, S. (2020 June 1). Time above the MIC of piperacillin-tazobactam as a predictor of outcome in Pseudomonas aeruginosa bacteremia. Antimicrobial Agents and Chemotherapy, 64(8), e02571-19. https://doi.org/10.1128/AAC.02571-19, PubMed: 32482679
Abbas, H. A., El-Ganiny, A. M., & Kamel, H. A. (2018). Phenotypic and genotypic detection of antibiotic resistance of Pseudomonas aeruginosa isolated from urinary tract infections. African Health Sciences, 18(1), 11–21. https://doi.org/10.4314/ahs.v18i1.3
Al Muqati, H., Al Turaiki, A., Al Dhahri, F., Al Enazi, H., & Althemery, A. (2021 March 1). Superinfection rate among the patients treated with carbapenem versus piperacillin/tazobactam: Retrospective observational study. Journal of Infection and Public Health, 14(3), 306–310. https://doi.org/10.1016/j.jiph.2020.11.015, PubMed: 33618274
Al-Derzi, N. (2012). Pattern of Resistance to Pseudomonas infection in the North of Iraq: Emphasis on the Potential Role of a Combination antibiogram. Iraqi. Journal of Community Medicine, 11, 193–198.
Aljanaby, A. A. J., & Aljanaby, I. A. J. (2018 July 30). Prevalence of aerobic pathogenic bacteria isolated from patients with burn infection and their antimicrobial susceptibility patterns in Al-Najaf City, Iraq-a three-year cross-sectional study. F1000Research, 7(1157), 1157. https://doi.org/10.12688/f1000research.15088.1
Breidenstein, E. B., de la Fuente-Núñez, C., & Hancock, R. E. (2011 August 1). Pseudomonas aeruginosa: All roads lead to resistance. Trends in Microbiology, 19(8), 419–426. https://doi.org/10.1016/j.tim.2011.04.005, PubMed: 21664819
Castanheira, M., Deshpande, L. M., Costello, A., Davies, T. A., & Jones, R. N. (2014 July 1). Epidemiology and carbapenem resistance mechanisms of carbapenem-non-susceptible Pseudomonas aeruginosa collected during 2009–11 in 14 European and Mediterranean countries. Journal of Antimicrobial Chemotherapy, 69(7), 1804–1814.ystems 10. https://doi.org/10.1093/jac/dku048
CLSI. Performance standards for antimicrobial susceptibility testing. 29ed. CLSI Supplement M100-S29. Clinical and Laboratory Standards Institute. (2021).
Coetzee, E., Rode, H., & Kahn, D. (2013 January). Pseudomonas aeruginosa burn wound infection in a dedicated paediatric burns unit. South African Journal of Surgery. Suid-Afrikaanse Tydskrif vir Chirurgie, 51(2), 50–53. https://doi.org/10.7196/sajs.1134
Coetzee, E., Rode, H., & Kahn, D. (2013 January). Pseudomonas aeruginosa burn wound infection in a dedicated paediatric burns unit. South African Journal of Surgery. Suid-Afrikaanse Tydskrif vir Chirurgie, 51(2), 50–53. https://doi.org/10.7196/sajs.1134, PubMed: 23725892
Ghanbarzadeh Corehtash, Z., Khorshidi, A., Firoozeh, F., Akbari, H., & Mahmoudi Aznaveh, A. (2015 October). Biofilm formation and virulence factors among Pseudomonas aeruginosa isolated from burn patients. Jundishapur Journal of Microbiology, 8(10), e22345. https://doi.org/10.5812/jjm.22345
Dalmolin, T. V., Bianchini, B. V., Rossi, G. G., Ramos, A. C., Gales, A. C., Trindade, P. A., & de Campos, M. M. A. (2017). Detection and analysis of different interactions between resistance mechanisms and carbapenems in clinical isolates of Klebsiella pneumoniae. Brazilian Journal of Microbiology, 48(3), 493–498. https://doi.org/10.1016/j.bjm.2017.01.003
El-Mahdy, R., & El-Kannishy, G. (November 2019). Virulence factors of carbapenem-resistant Pseudomonas aeruginosa In hospital-acquired infections in Mansoura, Egypt. Infection and Drug Resistance, 12, 3455–3461. https://doi.org/10.2147/IDR.S222329
Fazeli, H., Nasr Esfahani, B., Sattarzadeh, M., & Mohammadi Barzelighi, H. (2017 May 10). Antibiotyping and genotyping of Pseudomonas aeruginosa strains isolated from Mottahari Hospital in Tehran, Iran by ERIC-PCR. Infection Epidemiology and Microbiology, 3(2), 41–45.
Holloway, B. W. (1969 September). Genetics of pseudomonas. Bacteriological Reviews, 33(3), 419–443. https://doi.org/10.1128/br.33.3.419-443.1969
Hussein, Z. K., Kadhim, H. S., & Hassan, J. S. (2018). Detection of New Delhi metallo-beta-lactamase-1 (blaNDM-1) in carbapenem-resistant pseudomonas aeruginosa isolated from clinical samples in Wasit hospitals. Iraqi Journal of Medical Sciences, 16(3), 239–246. https://doi.org/10.22578/IJMS.16.3.3
Ibtesam Ghadban Auda, A. G., Sabah, N. H. K., & Abdul Latif, B. Occurrence of MexAB-oprm efflux pump operon on septicemic pseudomonas aeruginosa chromosome.
Juhi, T., Bibhabati, M., Archana, T., Poonam, L., & Vinita, D. (2009 December 1). Pseudomonas aeruginosa meningitis in post neurosurgical patients. Neurology Asia, 14(2), 95–100.
Karami, P., Mohajeri, P., Yousefi Mashouf, R. Y., Karami, M., Yaghoobi, M. H., Dastan, D., & Alikhani, M. Y. (2019 November 1). Molecular characterization of clinical and environmental Pseudomonas aeruginosa isolated in a burn center. Saudi Journal of Biological Sciences, 26(7), 1731–1736. https://doi.org/10.1016/j.sjbs.2018.07.009, PubMed: 31762651
Kateete, D. P., Nakanjako, R., Okee, M., Joloba, M. L., & Najjuka, C. F. (2017 December). Genotypic diversity among multidrug resistant Pseudomonas aeruginosa and Acinetobacter species at Mulago Hospital in Kampala, Uganda. BMC Research Notes, 10(1), 284. https://doi.org/10.1186/s13104-017-2612-y
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)