##plugins.themes.bootstrap3.article.main##

Huda Khadim Hasan Noor Salman Khadim Al-Khafaji

Abstract

The Coronavirus, one of the most rapidly spreading respiratory viruses, caused a worldwide epidemic that killed about six million people. This led to the fast development of several vaccines and drugs to reduce disease severity and speed patient recovery. This study aimed to identify the serum levels of each of the angiotensin-converting enzyme-2 and interleukin-12  .The severity of infection in coronavirus COVID-19 patients was compared to immune levels of these cytokines and receptors in the different cases of COVID-19 patients. This case-control study included 90 blood samples from COVID-19 patients with ages between 15-80 years. Results revealed that the serum levels of both angiotensin-converting enzyme-2 ( ACE-2) and interleukin-12 (IL-12) were measured in COVID-19 patients and the results were compared using an independent T-test, it was found that their levels for interleukin-12 revealed a significant difference (P ≤0.05) in the serum levels of severe cases when compared with non-severe cases. There was an increase in the serum level of IL-12 in severe cases was 33.340 ng/L, in the serum level and in non-severe cases was 20.913 ng/L. ( P ≤0.000), and for angiotensin-converting enzyme-2 this study revealed a significant difference in ACE-2 serum levels in severe cases (P ≤0.05) when compared with the non-severe cases of patients with COVID 19.  The serum level of ACE-2 in severe cases was 11.023 ng/ml, and in non-severe cases, it was 5.443ng/ml ( P ≤0.000). It was concluded that the emerging coronavirus works to create an immune storm represented by raising the serum levels of both ACE-2 and IL-12 that contribute to the damage to the alveoli in severely COV-19 patients.          


 

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Covid-19, Interleukin-12 (IL-12), Angiotensin-Converting Enzyme-2 (ACE-2), ELSA test

References
Crisci, C. D., Ardusso, L. R. F., Mossuz, A., & Müller, L. (2020). A precision medicine approach to SARS-CoV-2 pandemic management. Current Treatment Options in Allergy, 7(3), 422–440. https://doi.org/10.1007/s40521-020-00258-8
Galon, J., Costes, A., Sanchez-Cabo, F., Kirilovsky, A., Mlecnik, B., Lagorce-Pagès, C., Tosolini, M., Camus, M., Berger, A., Wind, P., Zinzindohoué, F., Bruneval, P., Cugnenc, P. H., Trajanoski, Z., Fridman, W. H., & Pagès, F. (2006). Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science, 313(5795), 1960–1964. https://doi.org/10.1126/science.1129139
Garvin, M. R., Alvarez, C., Miller, J. I., Prates, E. T., Walker, A. M., Amos, B. K., Mast, A. E., Justice, A., Aronow, B., & Jacobson, D. (2020). A mechanistic model and therapeutic interventions for COVID-19 involving a RAS-mediated bradykinin storm. eLife, 9, e59177. https://doi.org/10.7554/eLife.59177
Hussain, A., Bhowmik, B., & do Vale Moreira, N. C. (2020). COVID-19 and diabetes: Knowledge in progress. Diabetes Research and Clinical Practice, 162, 108142. https://doi.org/10.1016/j.diabres.2020.108142
Long, Q. X., Tang, X. J., Shi, Q. L., Li, Q., Deng, H. J., Yuan, J., Hu, J. L., Xu, W., Zhang, Y., Lv, F. J., Su, K., Zhang, F., Gong, J., Wu, B., Liu, X. M., Li, J. J., Qiu, J. F., Chen, J., & Huang, A. L. (2020). Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nature Medicine, 26(8), 1200–1204. https://doi.org/10.1038/s41591-020-0965-6
Liu, Y., Yang, Y., Zhang, C., Huang, F., Wang, F., Yuan, J., Wang, Z., Li, J., Li, J., Feng, C., Zhang, Z., Wang, L., Peng, L., Chen, L., Qin, Y., Zhao, D., Tan, S., Yin, L., Xu, J., . . . and Liu, L. (2020). Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Science China. Life Sciences, 63(3), 364–374. https://doi.org/10.1007/s11427-020-1643-8
Sriram, K., & Insel, P. A. (2020). Risks of ACE inhibitor and ARB usage in COVID-19: Evaluating the evidence. Clinical Pharmacology and Therapeutics, 108(2), 236–241. https://doi.org/10.1002/cpt.1863‏
Tjan, L. H., Furukawa, K., Nagano, T., Kiriu, T., Nishimura, M., Arii, J., Hino, Y., Iwata, S., Nishimura, Y., & Mori, Y. (2021). Early differences in cytokine production by severity of coronavirus disease 2019. Journal of Infectious Diseases, 223(7), 1145–1149. https://doi.org/10.1093/infdis/jiab005
Valencia, D. N. (2020). Brief review on COVID-19: The 2020 pandemic caused by SARS-CoV-2. Cureus, 12(3), e7386. https://doi.org/10.7759/cureus.7386
van Herpen, C. M., Looman, M., Zonneveld, M., Scharenborg, N., de Wilde, P. C., van de Locht, L., Merkx, M. A., Adema, G. J., & De Mulder, P. H. (2004). Intratumoral administration of recombinant human interleukin 12 in head and neck squamous cell carcinoma patients elicits a T-helper 1 profile in the locoregional lymph nodes. Clinical Cancer Research, 10(8), 2626–2635. https://doi.org/10.1158/1078-0432.ccr-03-0304
Xu, H., Zhong, L., Deng, J., Peng, J., Dan, H., Zeng, X., Li, T., & Chen, Q. (2020). High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. International Journal of Oral Science, 12(1), 8. https://doi.org/10.1038/s41368-020-0074-x
Yang, Y., Shen, C., Li, J., Yuan, J., Wei, J., Huang, F., Wang, F., Li, G., Li, Y., Xing, L., Peng, L., Yang, M., Cao, M., Zheng, H., Wu, W., Zou, R., Li, D., Xu, Z., Wang, H., . . . and Liu, Y. (2020). Plasma IP-10 and MCP-3 levels are highly associated with disease severity and predict the progression of COVID-19. Journal of Allergy and Clinical Immunology, 146(1), 119–127.e4. https://doi.org/10.1016/j.jaci.2020.04.027
Yao, Z., Zheng, Z., Wu, K., & Junhua, Z. (2020). Immune environment modulation in pneumonia patients caused by coronavirus: SARS-CoV, MERS-CoV and SARS-CoV-2. Aging, 12(9), 7639–7651. https://doi.org/10.18632/aging.103101
Zhang, H., Penninger, J. M., Li, Y., Zhong, N., & Slutsky, A. S. (2020). Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: Molecular mechanisms and potential therapeutic target. Intensive Care Medicine, 46(4), 586–590. https://doi.org/10.1007/s00134-020-05985-9
Zou, X., Chen, K., Zou, J., Han, P., Hao, J., & Han, Z. (2020). Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Frontiers of Medicine, 14(2), 185–192. https://doi.org/10.1007/s11684-020-0754-0
Section
Research Articles

How to Cite

Angiotensin-converting enzyme-2 and interleukin-12 serum level as indicator to severity between COVID-19 patients . (2022). Journal of Applied and Natural Science, 14(2), 433-436. https://doi.org/10.31018/jans.v14i2.3410