Article Main

Danial Shamzari Bin Hashim Jeng Young Liew Jia Geng Boon Huck Ywih Ch'ng

Abstract

Bamboo is a versatile resource for the synthesis of activated carbon. Low-cost precursors owing to a high growth rate and high carbon content in bamboo have consolidated its suitability as a renewable and notable alternative resource to activated carbon production. The attractiveness of bamboo activated carbon is due to its microcrystalline structure with a high porosity, fast absorption, and highly active surface area. Bamboo activated carbon can be synthesised via carbonisation and activation processes. The carbonisation process produces a substance with a colossal surface area to the mass ratio, which effective in holding various materials, minerals, humidity, odours, etc. Activation process involves the establishment of typical structures and advanced porosity to devise the high porosity of the solid activated carbon. Bamboo activated carbon can be used for energy-related reasons in environmental conservation, agriculture, soil amendment, animal feed additions, and wastewater treatment. It can also be used as a supplement in the composting and fermentation processes, utilised as a tar reduction catalyst in pyrolysis and gasification, as a pelletised fuel, and as a hydrogen production substrate. Numerous studies on activated carbon produced by diverse feedstocks are published in the areas of production, characterisation and possible uses and applications. Bamboo activated carbon is safeguarding its sphere of importance in today's era due to its multipurpose uses. The bamboo activated carbon is mostly used in the industrial, agricultural, and natural environment-related sectors. This paper presents a brief overview of the applications of bamboo activated carbon in numerous areas.

Article Details

Article Details

Keywords

Activated carbon, Adsorbent, Bamboo carbonisation, Pyrolysis

References
Aktar, M.W., Sengupta, D. & Chowdhury. A. (2009). Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip. Toxicol. 2(1), 1–12. https://doi.org/10.2478/v10102-009-0001-7
Alkherraz, A.M., Ali, A.K. & Elsherif, K.M. (2020). Removal of Pb(II), Zn(II), Cu(II) and Cd(II) from aqueous solutions by adsorption onto olive branches activated carbon: Equilibrium and thermodynamic studies. Chemistry International 6(1), 11-20. https://doi.org/10.5281/zenodo.2579465
Astuti, S., Rastini, F.E.K., Priskasari, E. & Praswanto, D.H. (2021). Mixed characteristics of activated charcoal ori bamboo and red ginger as air purifier on food cabinets. J. Sci. Appl. Eng. 4(2), 27-37.
Azeem, M.W., Hanif, M.A. & Khan, M.M. (2020). Chapter 3-Bamboo. In Hanif M.A., Nawaq, H., Khan, M.M. & Byrne, H. (Eds.), Medicinal Plants of South Asia (1st Ed., 29-45). Elsevier. https://doi.org/10.1016/B978-0-08-102659-5.00003-3
Bartocci, P., Bidini, G., Saputo, P. & Fantozzi, F. (2016). Biochar pellet carbon footprint. Chem. Eng. Trans. 50, 217-222. https://doi.org/10.3303/CET1650037
Bartocci, P., Zampilli, M., Bidini, G. & Fantozzi, F. (2018). Hydrogen-rich gas production through steam gasification of charcoal pellet. Appl. Therm. Eng. 132, 817-823. https://doi.org/10.1016/j.applthermaleng.2018.01.016
Behari, B. (2006). Status of Bamboo in India. Compilation of papers for preparation of national status report on forests and forestry in India. Survey and Utilization Division, Ministry of Environment and Forest. pp. 109-120.
Bouchelta, C., Medjram, M.S., Bertrand, O. & Bellat, J.P. (2008). Preparation and characterization characterisation of activated carbon from date stones by physical activation with steam. J. Anal. Appl. Pyrolysis 82(1), 70-77. https://doi.org/10.1016/j.jaap.2007.12.009
Brunner, A.M., Bertelkamp, C., Dingemans, M.M.L., Kolkman, A., Wols, B., Harmsen, D., Siegers, W., Martijn, B.J., Oorthuizen, W.A. & Laak, ter, (2020). Integration of target analyses, non-target screening and effect-based monitoring to assess OMP related water quality changes in drinking water treatment. Sci. Total Environ. 705, 135779. https://doi.org/10.1016/j.scitotenv.2019.135779
Bystriakova, N., Kapos, V., Lysenko, I. & Stapleton, C. (2003). Distribution and conservation status of forest bamboo biodiversity in the Asia-Pacific region. Biodivers. Conserv. 12, 1833-1841. https://doi.org/10.1023/A:1024139 813651
Cameron Carbon Incorporated (CCI) (2006). Activated carbon: manufacture, structure and properties: Activated carbon & related technology, USA.
Cazetta, A.L., Vargas, A.M.M., Nogami, E.M., Kunita, M.H., Guilherme, M.R. & Martins, A.C. (2011). NaOH-activated carbon of high surface area produced from coconut shell: Kinetics and equilibrium studies from the methylene blue adsorption. Chem. Eng. J. 174(1), 117-125. https://doi.org/10.1016/j.cej.2011.08.058
Ceyhan, A.A., Sahin, O., Baytar, O. & Saka, C. (2013). Surface and porous characterization characterisation of activated carbon prepared from pyrolysis of biomass by two-stage procedure at low activation temperature and it’s the adsorption of iodine. J. Anal. Appl. Pyrolysis 104, 378-383. https://doi.org/10.1016/j.jaap.2013.06.009
Chand Bansal, R., & Goyal, M. (2005). Activated Carbon Adsorption; CRC Press: Boca Raton, FL, USA. ISBN 978-0-8247-5344-3.
Chandra, T.C., Mirna, M.M., Sunarso, J., Sudaryanto, Y. & Ismadji, S. (2009). Activated carbon from durian shell: preparation and characterization. J. Taiwan Inst. Chem. Eng. 40(4), 457-462. https://doi.org/10.1016/j.jtice.200 8.10.002
Chang, K.L., Lin, J.H. & Chen, S.T. (2011). Adsorption studies on the removal of pesticides (carbofuran) using activated carbon from rice straw agricultural waste. Int. J. Agric. Biol. Eng. 5(4), 210-213. https://doi.org/10.5281/zenodo.1332440
Chien, C.C., Huang, Y.P., Wang, W.C., Chao, J.H., & Wei, Y.Y. (2011). Efficiency of moso bamboo charcoal and activated carbon for adsorbing radioactive iodine. Clean – Soil Air Water 39(2), 103-108. https://doi.org/10.1002/clen.201000012
Clark, L. G., & Oliveira, R. P. (2018). Diversity and evolution of the new world bamboos (Poaceae: Bambusoideae:Bambuseae, Olyreae) Proceedings of the 11th World Bamboo Congress, Xalapa, Mexico. The World Bamboo Organization, MA, U.S.A., 35-47.
Das, M., Bhattacharya, S., Singh, P., Filgueiras, T.S. & Pal, A. (2008). Bamboo taxonomy and diversity in the Era of molecular markers. Adv. Bot. Res. 47, 225-268. https://doi.org/10.1016/S0065-2296(08)00005-0
Du, H.Q., Mao, F.J., Li, X.J., Zhou, G.M., Xu, X.J., Han, N., Sun, S.B., Gao, G.L., Cui, L., Li, Y.G., Zhu, D., Liu, Y.L., Chen, L., Fan, W.L., Li, P.H., Shi, Y.L. & Zhou, Y.F. (2018). Mapping global bamboo forest distribution using multisource remote sensing data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 11(5), 1458-1471. https://doi.org/10.1109/JSTARS.2018.2800127
Elisabeth, S., Klaus, T., Christine, W., Andreas, H. & Vander, T. (2007). Experiments on the generation of activated carbon from biomass. J. Anal. Appl. Pyrolysis 79, 106-111. https://doi.org/106–111. 10.1016/j.jaap.2006.1 0.015
Filgueiras, T.S. & Goncalves, A.P.S. (2004). A checklist of the basal grasses and bamboos in Brazil. Bamboo Sci. Cult. 18, 7-18.
Gao, Y., Yue, Q., Xu, S., Gao, B., Li, Q. & Yu, H. (2015). Preparation and evaluation of adsorptive properties of micro-mesoporous activated carbon via sodium aluminate activation. Chem. Eng. J. 274, 76-83. https://doi.org/10.1016/j.cej.2015.03.055
Goyal, A.K., Ghosh, P.K., Dubey, P.K. & Sen, A. (2005). Inventorying bamboo biodiversity of North Bengal: a case study. Int. J. Fundam. Appl. Sci. 1, 5-8.
Guo, X., Duan, J., Li, C., Zhang, Z. & Wang, W. (2021). Modified bamboo-based activated carbon as the catalyst carrier for the gas phase synthesis of vinyl acetate from acetylene and acetic acid. Int. J. Chem. React. Eng. 19(4), 331-340. https://doi.org/10.1515/ijcre-2020-0196
Hadoun, H., Sadaoui, Z., Souami, N., Sahel, D. and Toumert, I. (2013). Characterization Characterisation of mesoporous carbon prepared from date stems by H3PO4 chemical activation. Appl. Surf. Sci. 280, 1-7. doi: 10.1016/j.apsusc.2013.04.054.
Huang, P.H. & Wen, J. (2014). Study on Thorny Bamboo Activated Carbon for Capturing Heavy Metals in Groundwater. Appl. Mech. Mater. 535, 427-431. https://doi.org/10.4028/www.scientific.net/amm.535.427
Huang, P.H., Jhan, J.W.J., Cheng, Y.M. & Cheng, H.H. (2014). Effect of carbonization carbonisation parameters of moso-bamboo-based porous charcoal on capturing carbon dioxide. Sci. World J. 2014, 8. https://doi.org/10.1155/2014/937867
Hughes, D., Thongkum, W., Tudpor, K., Turnbull, N., Yulakang, N., Sychareun, V., Vo, T.V., Win, L.L., Watkins, A. & Jordan, S. (2021). Pesticides use and health impacts on farmers in Thailand, Vietnam, and Lao PDR: Protocol for a survey of knowledge, behaviours and blood acetylcholinesterase concentrations. PLoS ONE 16(9), e0258134. https://doi.org/10.1371/journal.pone.0258134
Im, U-S., Kim, J., Lee, S.H., Lee, S.M., Lee, B-R., Peck, D-H. & Jung, D-H. (2019). Preparation of activated carbon from needle coke via two-stage steam activation process. Mater. Lett. 23, 22-25. https://doi.org/10.1016/j.matlet.201 8.09.171
Jawad, A.H. & Addulhameed, A.S. (2020). Statistical modeling of methylene blue dye adsorption by high surface area mesoporous activated carbon from bamboo chip using KOH-assisted thermal activation. Energ. Ecol. Environ. 5, 456-469. https://doi.org/10.1007/s40974-020-00177-z
Kigomo, B.N. (1988). Distribution, cultivation and research status of bamboo in Eastern Africa. KEFRI Ecol. Ser. Monogr. 1, 1-19.
Kurniawansyah, F., Pertiwi, R.D., Perdana, M., Al-Muttaqii, M. & Roesyadi, A. (2020). Development of bamboo-derived activated carbon as catalyst support for glucose hydrogenation. Mater. Sci. Forum 988, 108–113. https://doi.org/10.4028/www.scientific.net/msf.988.108
Leimkuehler, E.P. (2010). Production, characterisation and applications of activated carbon. MSc Thesis, Faculty of the Graduate School, University of Missouri, USA.
Li, D. Z. (1997). The flora of China Bambusoideae project: problems and current understanding of bamboo taxonomy in China. In: Chapman GP, editor. The Bamboos. London: Academic Press. pp. 61-81.
Li, H., Duan, M., Gu, J., Zhang, Y., Qian, X., Ma, J., Zhang, R. & Wang, X. (2017). Effects of bamboo charcoal on antibiotic resistance genes during chicken manure composting. Ecotox. Environ. Safe. 140, 1-6. https://doi.org/10.1016/j.ecoenv.2017.01.007
Li, Y., Jin, P., Liu, T., Lv, J. & Jiang, J. (2019). A novel method for sewage sludge composting using bamboo charcoal as a separating material. Environ. Sci. Pollut. Res. 26, 33870–33881. https://doi.org/10.1007/s11356-018-2534-9
Liu, J-X., Zhou, M-L., Yang, G-Q., Zhang, Y-X., Ma, P-F., Vorontsova, M.S. & Li, D-Z. (2020). ddRAD analyses reveal a credible phylogenetic relationship of the four main genera of Bambusa-Dendrocalamus-Gigantochloa complex (Poaceae: Bambusoideae), Mol. Phylogenet. Evol. 146, 106758. https://doi.org/10.1016/j.ympev.2020.106 758
Liu, K., Wang, R. & Yu, M. (2018). An efficient, recoverable solid base catalyst of magnetic bamboo charcoal: preparation, characterization, and performance in biodiesel production. Renew. Energy 127, 531-538. https://doi.org/10.1016/j.renene.2018.04.092
Lütke, S.F., Igansi, A.V., Pegorarao, L., Dotto, G.L., Pinto, L.A.A. & Cadaval, Jr. T.R.S. (2019). Preparation of activated carbon from black wattle bark waste and its application for phenol adsorption. J. Environ. Chem. Eng. 7, 103369. https://doi.org/10.1016/j.jece.2019.103396
Malinska, K. & Dach, J. (2015). Biochar as a supplementary material for biogas production. Ecol. Eng. 4, 117-124. https://doi.org/10.12912/23920629/1835
Malinska, K. (2015). Legal and quality aspects of requirements defined for biochar. Inż. Ochr. Śr. 18, 359-371.
Malinska, K., Zabochnicka-Swiatek, M. & Dach, J. (2014). Effects of biochar amendment on ammonia emission during composting of sewage sludge. Ecol. Eng. 71, 474-478. https://doi.org/10.1016/j.ecoleng.2014.07.012
Mallakpour, S. & Behranvand, V. (2020). Modification of polyurethane sponge with waste compact disc-derived activated carbon and its application in organic solvents/oil sorption. New J. Chem. 44, 15609-15616. https://doi.org/10.1039/d0nj02839h
Meng, Z., Zhang, Y., Anc, Q., Lv, F., Zhang, Q. & Hu, P. (2013). Removal of organic pollutants in solution by bamboo charcoal. Adv. Mat. Res. 699 (2013), 554-556. https://doi.org/10.4028/www.scientific.net/AMR.699.554
Mohan, D., Sarswat, A., Ok, S.Y. & Pittman, C.U. Jr. (2014). Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent—A critical review. Bioresour. Technol. 160, 191-202. https://doi.org/10.1016/j.biortech.2014.01.120
Moosavi, S., Lai, C.W., Gan, S.Y., Zamiri, G., Pivehzhani, Q.A., & Johan, M.R. (2020). Application of efficient magnetic particles and activated carbon for dye removal from wastewater. ACS Omega 5, 20684-20697. https://doi.org/10.1021/acsomega.0c01905
Mui, E.L.K, Cheung, W.H, Lee, V.K.C. & Mckay G. (2010). Compensation effect during the pyrolysis of tyres and bamboo. Waste Manag. 30(5), 821-830. https://doi.org/10.1016/j.wasman.2010.01.014
Naushad, M., Alqadami, A.A., AlOthman, Z.A., Alsohaimi, I.H., Algamdi, M.S. & Aldawsari, A.M. (2019). Adsorption kinetics, isotherm and reusability studies for the removal of cationic dye from aqueous medium using arginine modified activated carbon. J. Mol. Liq. 293, 111442. https://doi.org/10.1016/j.molliq.2019.111442
Negara, D.N.K.P., Nindhia, T.G.T., Surata, I.W., & Sucipta, M. (2016). Development and application of bamboo activated carbons and their potency as adsorbent material for adsorbed natural gas (ANG); An Overview. K. Eng. Materials 705, 126-130. https://doi.org/10.4028/www.scien tific.net/KEM.705.126
Negara, D.N.K.P., Nindhia, T.G.T., Surata, I.W., Hidajat, F. & Sucipta, M. (2020). Textural characteristics of activated carbons derived from tabah bamboo manufactured by using H3PO4 chemical activation. Materials Today: Proceedings 22, 148-155, https://doi.org/10.1016/j.matpr.20 19.08.030
Nfornkah, B.N., Rene, K., R., Martin, T., Louis, Z., Cedric, C. & Armand, T. (2020). Assessing the spatial distribution of bamboo species using remote sensing in Cameroon. J. Ecol. Nat. Environ. 12(4), 172-183. https://doi.org/10.5897/JENE2020.0839.
Ocreto, J., Go, C.I., Chua, J.C., Apacible, C.J. & Vilando, A. (2019). Competitive effects for the adsorption of copper, cadmium and lead ions using modified activated carbon from bamboo. MATEC Web of Conferences 268, 1-4. https://doi.org/10.1051/matecconf/201926806021
Oss, R.N., Gonçalves, R.F., Cassini, S.T., Schettino, Jr. M.A., Cipriano, D.F. & Freitas, J.G.G. (2022). Single step production of activated carbon from microalgae cultivated with urban wastewater. Algal Res. 64, 102669. https://doi.org/10.1016/j.algal.2022.102669
Paethanom, A., Bartocci, P., D’Alessandro, B., D’Amico, M., Testarmata, F., Moriconi, N., Slopiecka, K., Yoshikawa, K., & Fantozzi, F. (2013). A low-cost pyrogas cleaning system for power generation: Scaling up from lab to pilot. Appl. Energy 111, 1080-1088. https://doi.org/10.1016/j.apenergy.2013.06.044
Pereira, R.C., Muetzel, S., Arbestain, M.C., Bishop, P., Hina, K. & Hedley, M. (2014). Assessment of the influence of biochar on rumen and silage fermentation: A laboratory–scale experiment. Anim. Feed Sci. Technol. 196, 22-31. https://doi.org/10.1016/j.anifeedsci.2014.06.019
Ramanayake, S.M.S.D., Meemaduma, V.N. & Weerawardene, T.E. (2007). Genetic diversity and relationships between nine species of bamboo in Sri Lanka, using random amplified polymorphic DNA. Plant Syst. Evol. 269, 55-61. https://doi.org/10.1007/s00606-007-0587-1
Rengga, W.D.P., Chafidz, A., Sudibandriyo, M., Nasikin, M. & Abasaeed, A.E. (2017). Silver nano-particles deposited on bamboo-based activated carbon for removal of formaldehyde. J. Environ. Chem. Eng. 5(2), 1657-1665. https://doi.org/10.1016/j.jece.2017.02.033
Ridara, R., Nasution D.A. & Wirjosentono, B. (2020). Modification of pulp cellulose of Belangke bamboo (Gigantochloa pruriens) using [2-(Acrylolloxy)Ethyl] trimethyl ammonium chloride and maleic anhydride. Int. Cof. Chem. Sci. Tech. Innovation 2019. 305-311. https://doi.org/ 10.5220/0008932303050311
Rovani, S., Rodrigues, A.G., Medeiros, L.F., Cataluna, R., Lima, E.C. & Fernandes, A.N. (2016). Synthesis and characterisation of activated carbon from agroindustrial waste—preliminary study of 17β-estradiol removal from aqueous solution. J. Environ. Chem. Eng. 4, 2128-2137. https://doi.org/10.1016/j.jece.2016.03.030
Santana, G.M., Lelis, R.C.C., Jaguaribe, E.F., Morais, R.D.M., Paes, J.B., & Trugilho, P.F. (2017). Development of activated carbon frm bamboo (Bambusa vulgaris) for pesticide removal from aqueous solutions. Cerne. 23(1), 123-132. https://doi.org/10.1590/01047760201723012256
Sharma, M., Joshi, M., Nigam, S., Shree, S., Avasthi, D.K., Adelung, R., Srivastava, S.K. & Mishra, Y.K. (2018). ZnO tetrapods and activated carbon based hybrid composite: Adsorbents for enhanced decontamination of hexavalent chromium from aqueous solution. Chem. Eng. J. 358, 540-551. https://doi.org/10.1016/j.cej.2018.10.03
Steiner, C., Das, K.C., Melear, N., & Lakly, D. (2010). Reducing nitrogen loss during poultry litter composting using biochar. J. Environ. Qual. 39, 1236-1242. https://doi.org/10.2134/jeq2009.0337
Sudibandriyo, M. & Oratmangun, M. (2018). Betung bamboo-based activated carbon bioadsorbent for the separation of hydrogen-methane gas mixture. E3S Web Conf. 67(2018), 02039. https://doi.org/10.1051/e3sconf/2018670 2039
Sudibandriyo, M. & Jamil, S. (2018). Production of antipollutant mask with bamboo based carbon activated using H3PO4 and K2CO3. E3S Web Conf. 67(2018), 03041. https://doi.org/10.1051/e3sconf/20186703041
Sujiono, E. H., Zabrian, D., Zurnansyah, Mulyati, Zharvan, V., Samnur & Humairah, N. A., (2022). Fabrication and characterization of coconut shell activated carbon using variation chemical activation for wastewater treatment application. Results in Chemistry, 4, 100291. https://doi.org/10.1016/j.rechem.2022.100291
Suwanasing, K. & Poonprasit, M. (2014). Efficiency of bamboo waste activated carbon on acid dye wastewater treatment. Adv. Mat. Res. 931-932, 640-644. https://doi.org/10.4028/www.scientific.net/amr.931-932.640
Taiwo, A, Amadi, S.A. & Deinkuro, N. (2010). Adsorption and Treatment of Organic Contaminants using Activated Carbon from Waste Nigerian Bamboo. J. Appl. Sci. Environ. Manage. 13(10), 4314. https://doi.org/10.4314/jasem.v13i3.55351
Taiwo, A.F. & Chinyere, N.J. (2016). Sorption characteristics for multiple adsorption of heavy metal ions using activated carbon from Nigerian bamboo. J. of Mater. Sci. Chem. Eng. 4, 39-48. https://doi.org/10.4236/msce.201 6.44005
Takashi, A., Shigehisa, I., Takeshi, Y., Akemi, T., Akifumi, Y. & Kikua, O. (2002). Science of Bamboo Charcoal: Study on Carbonizing Temperature of Bamboo Charcoal and Removal Capability of Harmful Gases. J. H. Science. 48(6), 473-479. https://doi.org/10.1248/jhs.48.473
Tang, J., Zhy, W., Kookana, R. & Katayama, A. (2013). Characteristics of biochar and its application in remediation of contaminated soil. J. Biosci. Bioeng.116, 653-659. https://doi.org/10.1016/j.jbiosc.2013.05.035
Tewari, D.N. (1992). A monograph on Bamboo. Dehradun: International Book Distributors.
Thotagamuge, R., Kooh, M.R.R., Hamidi, A.H., Lim, C.M., Abu, M., Jan, A., Hanipah, A.H.A., Khiong, Y.Y. & Shofry, A. (2021). Copper modified activated bamboo charcoal to enhance adsorption of heavy metals from industrial wastewater. Environ. Nanotechnol. Monit. Manag. 16, 100562. https://doi.org/10.1016/j.enmm.2021.100562
Wang, L., Chen, G., Owens, G. & Zhang, J. (2016). Enhanced antibiotic removal by the addition of bamboo charcoal during pig manure composting. Royal Soc. Chem. 6, 27575-27583. https://doi.org/10.1039/C5RA27493A
Wei, H.G., Wang, H., Li, A., Li, H.Q., Cui, D.P., Dong, M.Y., Lin, J., Fan, J.C., Zhang, J.X., Hou, H., Shi, Y.P., Zhou, D.F. & Guo, Z.H. (2019). Advanced porous hierarchical activated carbon derived from agricultural wastes toward high performance supercapacitors. J. Alloys Compd. 820, 153111. https://doi.org/10.1016/j.jallco m.2019.153111
Wei, H.R., Deng, S.B., Hu, B.Y., Chen, Z.H., Wang, B., Huang, J. & Yu, G. (2012). Granular bamboo-derived activated carbon for high CO2 adsorption: the dominant role of narrow micropores. ChemSusChem. 5, 2354-2360. https://doi.org/10.1002/cssc.201200570
Yeo, T.H.C., Tan, I.A.W., & Abdullah, M.O. (2012). Development of adsorption air-conditioning technology using modified activated carbon—a review. Renew. Sust. Energ. Rev. 16, 3355-3363. https://doi.org/10.1016/j.rser.2012.0 2.073
Yin, Y., Yang, C., Tang, J., Gu, J., Li, H., Duan, M., Wang, X. & Chen, R. (2021). Bamboo charcoal enhances cellulase and urease activities during chicken manure composting: Roles of the bacterial community and metabolic functions. J. Environ. Sci. 108. https://doi.org/10.1016/j.jes.2021.02.007
Yu, X., Qin, A., Liao, L., Du, R., Tian, N., Huang, S. & Wei, C. (2015). Removal of organic dyes by nanostructure zno-bamboo charcoal composites with photocatalysis function. Adv. Mater. Sci. Eng. 2015, 1-6. https://doi.org/10.1155/20 15/252951
Zhang, W. & Clark, L.G. (2000). Phylogeny and classification of the Bambusoideae (Poaceae) In: Jacobs SWL, Everett JE, editors. Grasses: systematics and evolution. Collingwood: CSIRO Publishing. pp. 35-42.
Zhang, Y., Li, J., Li, B., Li, Z., He, Y., Qin, Z. & Gao, R. (2021). Preparation of Ni-La/Al2O3-CeO2-bamboo charcoal catalyst and its application in co-pyrolysis of straw and plastic for hydrogen production. Bioenerg. Res. 10. https://doi.org/10.1007/s12155-021-10359-0
Zhang, Z.B., Jiang, C., Li, D.W., Lei, Y.Q., Yao, H.M., Zhou, G.Y., Wang, K., Rao, Y.L., Liu, W.G., Xu, C.L. & Zhang, X.X. (2020). Micro-mesoporous activated carbon simultaneously possessing large surface area and ultra-high pore volume for efficiently adsorbing various VOCs. Carbon 170, 567-579. https://doi.org/10.1016/j.carbo n.2020.08.033
Section
Research Articles

How to Cite

Multipurpose applications of bamboo as an activated carbon: An overview. (2022). Journal of Applied and Natural Science, 14(2), 522-530. https://doi.org/10.31018/jans.v14i2.3406