##plugins.themes.bootstrap3.article.main##

Sonal Gupta Ashwini A. Waoo

Abstract

Salinity is one of the predominant abiotic stresses which affects plant growth by inducing excessive production of reactive oxygen species (ROS) that leads to oxidative damage of plant cells. Plants alleviate salinity stress by regulating intracellular concentrations of various phytochemicals like phenol, tannin, antioxidants, etc. The present work aimed to study the impact of salt stress on the production of various phytochemicals like phenol, tannin, flavonoids, antioxidants, total protein content, etc. The Salt stress response of the test plant Centella asiatica was studied by irrigating variant concentrations (50mM, 100mm, 150mm, 200mM, 250mm) of salt (NaCl). The phytochemical activity of the plants grown under salinity stress was estimated by using an appropriate biochemical assay. Comparative analysis of the photochemical activity of the test plants in comparison with the control revealed that various phytochemicals were increased in response to salt stress. Salt stress increased the levels of antioxidants from 10.79 to 14.31 μg/ml), phenol from 30.8 to 43.3 in μg/ml, flavonoids (from 490 to 683.33 in μg/ml), tannin from 55.5 to 64.5 in μg/ml, and proteins from 5720 to 6080 in μg/ml in the C. asiatica plants. To sum up, salt stress elicited phytochemical accumulation in the C. asiatica plant, thereby improving the plant's growth by enhancing its resistance to salt stress. This finding may play an important role in the sustainable cultivation of commercially important crops like C. asiatica.

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Biochemical analysis, Centella asiatica, Phytochemicals, Salinity stress, Stress tolerance

References
Abdul-Qados, A. M. S. Effect of salt stress on plant growth and metabolism of bean plant Vicia faba (L.) (2011). Journal of Saudi Society and Agricultural Sciences, 10 (1), 7-15 https://doi.org/10.1016/j.jssas.201 0.06.002
Anna-da-Silva, A. P., Nascimento-da-Silva, L. C., Martins-da-Fonseca, C. S., De-Araujo, J. M., Dos-Santos-Correia, M. T., Da-Silva-Cavalcanti, M. & De-Menezes-Lima, V. L. (2016). Antimicrobial activity and phytochemical analysis of organic extracts from Cleome spinosa Jaqc. Frontiers in Microbiology, 7, Article 963. https://doi.org/10.3389%2Ffmicb.2016.00963
Annamalai, J., Shanmugam, J. & Nallamuthu, T. (2016). Salt stress enhancing the production of phytochemicals in Chlorella vulgaris and Chlamydomonas reinhardtii. Journal of Algal Biomass Utilization, 7 (1), 7-44.
Bharti, N., Yadav, D., Barnawal, D., Maji, D. & Kalra, A. (2013) Exiguobacterium oxidotolerans, a halotolerant plant growth-promoting rhizobacteria, improves yield and content of secondary metabolites in Bacopa monnieri (L.) Pennell under primary and secondary salt stress. World Journal of Microbiology and Biotechnology, 29 (2), 379-387. https://doi.org/10.1007/s11274-012-1192-1
Brinkhaus, B. M., Lindner, D., Schuppan, E. G. & Hahn. (2000). Chemical, pharmacological and clinical profile of the East Asian medical plant Centella asiatica. Phytomedicine, 7, 427-448. https://doi.org/10.1016/s0944-7113(00)80065-3
Devkota, A. & Jha, P. K. (2010). Seed germination responses of the medicinal herb Centella asiatica. Brazilian Society of Plant Physiology, 22 (2),143-150 https://doi.org/10.1590/S1677-04202010000200008
El-Lamey, T. A. (2012). Effect of salinity on the tannin content of Leucaena leucocephala (Lam.) de wit. and Prosopis chilensis (Molina) Stuntz and techniques for their reduction. Egypt Journal of Botany, pp 51-63
Ezeonu, C. S. & Ejikeme, C. M. (2016). Qualitative and quantitative determination of phytochemical contents of indigenous Nigerian softwoods. New Journal of Science, https://doi.org/10.1155/2016/5601327
Falcinelli, B., Sileoni, V., Marconi, O., Perretti, G., Quinet, M., Lutts, S. & Benincasa, P. (2017). Germination
under moderate salinity increases phenolic content
and antioxidant activity in rapeseed (Brassica napus var oleifera Del.) Sprouts. Molecules, 22 (8) https://doi.org/10.3390/molecules22081377
Gill, S. & Tuteja, N. (2010). Polyamines and abiotic stress tolerance in plants. Plant Signaling & Behavior, 5 (1), 26-33. https://doi.org/10.4161/psb.5.1.10291
Goudarzi, M. & Pakniyat, H. (2009). Salinity causes an increase in proline, protein contents, and peroxidase activity in wheat cultivars. Journal of Applied Sciences, 9 (2), 348-353 https://dx.doi.org/10.3923/jas.2009.348.353
Hashim, P., Sidek, H., Helan, M., Sabery, A., Palanisamy, U. D. & MohdIlham. (2011). Triterpene composition and bioactivities of Centella asiatica. Molecules, 16 (2),1310-1322 https://doi.org/10.3390%2Fmolecules16021310
Hassan, M. A., Pacurar, A., Lopez-Gresa, M. P., Donat-Torres, M. P., Llinares, J. V., Boscaiu, M. and Vicente, O. (2016). Effects of salt stress on three ecologically distinct Plantago Species. PLoS ONE, 11 (8). https://doi.org/10.1371/journal.pone.0160236
Hayat, S., Hayat, Q., Alyemeni, M. N., Shafi Wani, A., Pichtel, J. & Ahmad, A. (2012). Role of proline under changing environments: A review. Plant Signaling and Behaviour, 7 (11), 1456-1466. https://doi.org/10.4161/psb.21949
Hirayama, T. & Shinozaki, K. (2010). Research on plant abiotic stress responses in the post-genome era: past, present, and future. The Plant Journal, 61 (6), 1041–1052. https://doi.org/10.1111/j.1365-313x.2010.04124.x
James, J. T. & Dubery, I. A. (2009). Pentacyclic Triterpenoids from the medicinal herb, Centella asiatica (L.) Urban. Molecules, 14 (10), 3922-3941. https://doi.org/10.3390/molecules14103922
Kashmira, J., Gohil, J., Patel, A. & Gajjar, A. K. (2010). Pharmacological review on Centella asiatica: A potential herbal cure-all. Indian Journal of Pharmaceutical Sciences, 72 (5), 546-556. https://doi.org/10.4103%2F0250-474X.78519
Katalinic, V., Milos, M., Kulisic. & Jukic, M. (2006). Screening of 70 medicinal plant extracts for antioxidant capacity and total phenols. Elsevier, 94 (4), 550-557. https://doi.org/10.1016/j.foodchem.2004.12.004
Khan, N. A., Khan, M. I. R., Asgher, M., Fatima, M., Masood, A. & Saeed, S. (2014). Salinity tolerance in plants: Revisiting the role of sulfur metabolites. Journal of Plant Biochemistry & Physiology, 2 (1). http://dx.doi.org/10.4172/2329-9029.1000120
Kumar, J., Singh, S., Singh, S., Srivastava, P. K., Mishra, R. K., Singh, V. P. & Prasad, S. M. (2017). Transcriptional regulation of salinity stress in plants: A short review. Plant Gene, 11 (part B),160-169. http://dx.doi.org/10.1016%2Fj.plgene.2017.04.001
Kunjumon, R., Johnson, J. A. & Sabulal, B. (2022). Centella asiatica: Secondary metabolites, biological activities, and biomass sources. Science Direct, 2 (1) https://doi.org/10.1016/j.phyplu.2021.100176
Negrao, S., Schomockel, S. M. & Tester, M. (2017). Evaluating physiological responses of plants to salinity stress. Annals of Botany, 119 (1), 1-11 https://doi.org/10.1093%2Faob%2Fmcw191
Nurul, M.H., Radzali, M., Johari, R., Syahida, A. and Maziah, M. (2008). Antioxidant Activities of Different Aerial Parts of Putat (Barringtonia racemosa L.). Malaysian Journal of Biochemistry and Molecular Biology, 16, 15-19
Rajendra, F. M., Kristiani, L. S. & Ariviani, S. (2019). Elicitation under salinity stress increases flavonoid content and antioxidant activity in cowpea (Vigna unguiculata) sprouts. Materials Science, and Engineering, 633 (1). http://dx.doi.org/10.1088/1757-899X/633/1/012034
Rangarajan, N. & Sathiyavani. (2014). Phytochemical screening and evaluation of protein content in the seed extracts of Cucurbita maxima. International Journal of Pharmacy and Life Sciences, 5 (7), 3637-3642
Razieh, K., Arzani, A. & Miramohammady-Maibody, S. A. M. (2021). Polyphenol, flavonoid, and antioxidant activity involved in salt tolerance in Wheat, Aegilop cylindrica, and their Amphidiploids. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2021.646221
Rezazadeh, A., Ghasemnezhad, A., Barani, M. & Telmadarrehei, T. (2013). Effect of salinity on phenolic composition and antioxidant activity in Artichoke (Cynara scolymus L.) leaves. Research Journal of Medicinal Plants, 6 (3), 245-252 https://dx.doi.org/10.3923/rjmp.2012.245.252
Ruszymah, B. H., Chowdhury, S. R., Manan, N. A., Fong, O. S., Adenan, M. I. & Saim, A. B. (2012). Aqueous extract of Centella asiatica promotes corneal epithelium wound healing in vitro. Ethnopharmacol, 140 (2), 333-338. https://doi.org/10.1016/j.jep.2012.01.023
Sasidharan, S., Chen, Y., Saravanan, D., Sundram, K. M. & Latha, L. Y. (2011). Extraction, isolation, and characterization of bioactive compounds from Plants' extracts. African Journal of Traditional, Complementary and Alternative Medicines, 8 (1), 1-10 https://doi.org/10.4314/ajtcam.v8i1.60483
Sharma, V. & Ramawat, K. G. (2013) Salinity-induced modulation on growth and antioxidant activity in the callus cultures of miswak (Salvadora persica). 3 Biotech, 3 (1) 11-17 https://doi.org/10.1007/s13205-012-0064-6
Shukurova, K. S., Myint, D., Yi, S. S., Saw, O. M. & Watanabe, K. N. (2021). Morphological description and ethnobotanical review of the orphan crop Myin-Hkwa (Centella asiatica L.) from Myanmar. Frontiers in Sustainable Food System. https://doi.org/10.3389/fsufs.20 21.680862
Singh, S., Gautam, A., Sharma, A. & Batra, A. (2010). Centella asiatica (L.): A plant with immense medicinal potential but threatened. International Journal of Pharmaceutical Sciences Review and Research, 4 (2), 9-19.
Thaker, P. N., Brahmbhatt, N. & Shah, K. (2021). A review: Impact of soil salinity on ecological, agricultural, and socio-economic concerns. International Journal of Advanced Research, 979-986. http://dx.doi.org/10.21474/IJAR01/13200
Valifard, M., Mohsenzahed, S., Kholadebarin, B. & Rowshan, B. (2014). Effects of salt stress on volatile compounds, total phenolic and antioxidant activities of Salvia mirzayanii. South African Journal of Botany, (93), 92-97. https://doi.org/10.1016/J.SAJB.2014.04.002
Wijeweera, P., Arnasona, J. T. & Koszycki Merali, Z. (2006). Evaluation of anxiolytic properties of Gotukola – (Centella asiatica) extracts and asiaticoside in rat behavioral models. Phytomedicines,13 (9-10), 668-676. https://doi.org/10.1016/j.phymed.2006.01.011
Yadav, R. N. S. & Agrawala, M. (2011). Phytochemical analysis of some medicinal plants. Journal of Phytology, 3 (12), pp 10-14.
Zhou, Y., Tang, N., Huang, L., Zhao, Y., Tang, X. & Wang, K. (2018). Effects of salt stress on plant growth, antioxidant capacity, glandular trichome density, and volatile exudates of Schizonepeta tenuifolia. International Journal of Molecular Sciences, 19 (1), 252-266. https://doi.org/10.3390%2Fijms19010252
Section
Research Articles

How to Cite

Effect of salinity stress on phytochemical characteristics of Centella asiatica . (2022). Journal of Applied and Natural Science, 14(2), 684-691. https://doi.org/10.31018/jans.v14i2.3387