##plugins.themes.bootstrap3.article.main##

Jung Hyun Kim Ji Hye Kim Min Young Kim

Abstract

Defatted Camellia japonica L. seed cake is an important byproduct during the manufacture of Camellia seed oil. The present study evaluated the influence of two extraction solvents on the total contents of phenol and flavonoid, antioxidant activity and skin-whitening effect capable of inhibiting the biosynthesis of melanin of defatted Camellia seed cakes, a byproduct from Camellia oil production. The antioxidant capacities of 100% methanol and 70% ethanol extracts were analysed using radical scavenging (1,1-diphenyl-2-picrylhydrazyl, O2-, H2O2 and NO), SOD-like, ferrous ion chelating and reducing power assays. The total phenolic and flavonoid contents were further determined by the Folin-Ciocalteu method. Moreover, intracellular antityrosinase activity and melanin contents were evaluated in human malignant melanoma cells (SK mel-100). Ethanol extracts of defatted Camellia seed cake extracts exhibited higher phenolic (4097 mg gallic acid equivalents/100 g) and flavonoid (2899 mg rutin equivalents/100 g) contents with higher superoxide (IC50 = 1.9 mg/mL), nitric oxide (IC50 =1.6 mg/mL) radical scavenging, ferrous ion chelating (IC50 = 2.9 mg/mL) and reducing power (IC50 = 1.8 mg/mL) activities than those of methanol. These ethanol extracts also evidenced more effective inhibitory activities of tyrosinase and melanin synthesis than methanol extracts. Therefore, the present results demonstrated that defatted Camellia seed cakes could be a valuable source of antioxidative and whitening ingredients, and ethanol was more efficient in extracting antioxidants and bioactive compounds than methanol.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Antioxidant, Defatted Camellia seed cakes, Extraction solvents, Melanin and tyrosinase inhibition

References
Ancut, P. & Sonia, A. (2020) Oil press-cakes and meals valorization through circular economy approaches: a review. Applied Sciences, 10(21), 7432. doi.org/10.3390/app10217432.
Chaydarreh, K.C., Lin, X., Guan, L., Yun, H., Gu, J. & Hu, C. (2021). Utilization of tea oil camellia (Camellia oleifera Abel.) shells as alternative raw materials for manufacturing particleboard. Industrial Crops and Products, 161, 113221. doi.org/10.1016/j.indcrop.2020.113221.
Chemat, F., Abert, V.M., Ravi, H.K., Khadhraoui, B., Hilali, S., Perino, S. & Tixier, A. F. (2019) Review of alternative solvents for green extraction of food and natural products: panorama, principles, applications and prospects. Molecules, 24(16), 3007. doi.org/10.3390/molecules24163007.
Dirar, A., Alsaadi, D.H.M., Wada, M., Mohamed, M.A., Watanabe, T. & Devkota, H.P. (2019) Effects of extraction solvents on total phenolic and flavonoid contents and biological activities of extracts from Sudanese medicinal plants. South African Journal of Botany, 120, 261-267. doi.org/10.1016/j.sajb.2018.07.003.
He, J., Wu, X. & Yu, Z. (2021) Microwave pretreatment of camellia (Camellia oleifera Abel.) seeds: Effect on oil flavor. Food Chemistry, 364, 130388. doi.org/10.1016/j.foodchem.2021.130388.
Fam, V.W., Charoenwoodhipong, P., Sivamana, R.K., Holt, R.R., Keen, C.L. & Hackman, R.
M. (2022) Plant-Based Foods for Skin Health: A Narrative Review. Journal of the Academy of Nutrition and Dietetics, 122(3), 614-629. doi.org/10.1016/j.jand.2021.10.024.
Feng, J., Ma, Y.L., Sun, P., Thakur, K., Wang, S., Zhang, J.G. & Wei, Z.J. (2019). Purification and characterization of α-glucosidase inhibitory peptides from defatted Camellia seed cake. International Journal of Food Science and Technology, 56, 138-147. doi.org/10.1111/ijfs.14613.
Galloway, A.F., Knox, P. & Krause, K. (2020) Sticky mucilages and exudates of plants: putative microenvironmental design elements with biotechnological value. New Phytologist, 225, 1461-1469. doi.org/10.1111/nph.16144.
Gema, M., Marlon, R., Joel, D., de Fátima, R. & Silvia, L. (2020) Effect of ethanol and methanol on the total phenolic content and antioxidant capacity of Chia seeds (Salvia hispanica L.). Sains Malaysiana, 49(6), 1283-1292. doi.org/10.17576/jsm-2020-4906-06.
Kim, M.Y. (2020) Sasa quelpaertensis Nakai extract induces p53-independent apoptosis via the elevation of nitric oxide production. Oncology Letter, 19(4), 3027-3034. doi.org/10.3892/ol.2020.11379.
Kim, M.Y. (2017) Inhibitory activities of Camellia mistletoe (K. japonica) extracts on pancreatic lipase, tyrosinase and cancer cell proliferation. International Journal of Pharmacy and Pharmaceutical Sciences, 9(10), 187. doi.org/10.221 59/ijpps.2017v9i10.21304.
Kim, J.H., Park, E.M., Kim, M.Y. (2020) The influence of seasonality and solvent types on inhibition of inflammation, α-glucosidase, tyrosinase and pancreatic lipase by Camellia mistletoe. Journal of Critical Reviews. 7(19), 8060-8065.
Liang, H. (2017) Camellia as an oilseed crop. Hort. Science, 52(4), 488-497. doi.org/10.21273/HORTSCI11570-16.
Liu, Y., Liang, Y., Li, X. & Li, J. (2019) Optimization of key techniques for ethanol extraction of Camellia seed oil by response surface experiment. Journal of Food Science & Technology, 4(1), 652-658. doi.org/10.25177/JFST.4.2.R A.475.
Lushchak, V.I. & Lushchak, O. (2021) Interplay between reactive oxygen and nitrogen species in living organisms. Chemico-Biological Interactions, 349, 109680.
Moon, S.H. & Kim, M.Y. (2018) Phytochemical profile, antioxidant, antimicrobial and antipancreatic lipase activities of fermented Camellia japonica L leaf extracts. Tropical Journal of Pharmaceutical Research, 17(5), 905-912. doi.org/10.4314/tjpr.v17i5.22.
Moon, S.H., Cho, M.H. & Kim, M.Y. (2016) Cellular inactivation of nitric oxide induces p53-dependent apoptosis in human melanoma cells. Tropical Journal of Pharmaceutical Research, 15(8), 1595-1603. doi.org/10.4314/tjpr.v15i8.1.
Mukherjee, P.K., Biswas, R., Sharma, A., Banerjee, S., Biswas, S., Katiyar, C.K. (2018) Validation of medicinal herbs for anti-tyrosinase potential. Journal of Herbal Medicine. 14, 1-16. doi.org/10.1016/j.hermed.2018.09.002.
Naji, K.M., Thamer, F.H., Numan, A.A., Dauqan, E.M., Alshaibi, Y.M. & Dsouza, M.R. (2020) Ferric-bipyridine assay: A novel spectrophotometric method for measurement of antioxidant capacity. Heliyon, 6(1), e03162. doi.org/10.1016/j.heliyon.2020.e03162.
Ngo, T.V., Scarlett, C.J., Bowyer, M.C., Ngo, P.D. & Vuong, Q.V. (2017) Impact of different extraction solvents on bioactive compounds and antioxidant capacity from the root of Salacia chinensis L. Journal of Food Quality, 2017, 1-8. doi.org/10.1155/2017/9305047.
Park, E.M. & Kim, M.Y. (2019) Hangover relieving and antioxidant effects of Gynostemma pentaphyllum (Thunb.) Makino and/or Hoveniadulcis Thunb. extracts. Journal of Applied Pharmaceutical Science, 9, 116-119. doi.org/10.7324/JAPS.2019.91016.
Rajapaksha, S. & Shimuzu, N. (2022) Pilot-scale extraction of polyphenols from spent black tea by semicontinuous subcritical solvent extraction. Food Chemistry: X, 13, 100200. doi.org/10.1016/j.fochx.2021.100200.
Sánchez-Vallejo, C., Ballesteros-Gómez, A. & Rubio, S. (2022) Tailoring composition and nanostructures in supramolecular solvents: Impact on the extraction efficiency of polyphenols from vegetal biomass. Separation and Purification Technology, 292, 120991. doi.org/10.1016/j.seppur.2022.120991.
Sharma, A., Tewari, D., Nabavi, S.F., Nabavi, S.M., Habtemariam, S. (2021) Reactive oxygen species modulators in pulmonary medicine. Current Opinion in Pharmacology, 57, 157-164. doi.org/10.1016/j.coph.2021.02.005.
Shi, F., Xie, L., Lin, Q., Tong, C., Fu, Q., Xu, J., Xiao, J. & Shi, S. (2020) Profiling of tyrosinase inhibitors in mango leaves for a sustainable agro-industry. Food Chemistry, 312, 126042. doi.org/10.1016/j.foodchem.2019.126042.
Shi, T., Wu, G., Jin, Q. & Wang, X. (2020) Camellia oil authentication: A comparative analysis and recent analytical techniques developed for its assessment. A review. Trends in Food Science & Technology, 97, 88-99. doi.org/10.1016/j.tifs.2020.01.005.
Tsai, C.E. & Lin, L.H. (2019) DPPH scavenging capacity of extracts from Camellia seed dregs using polyol compounds as solvents. Heliyon, 5, e02315. doi.org/10.1016/j.heliyon.2019.e02315.
Tungmunnithum, D., Thongboonyou, A., Pholboon, A. & Yangsabai, A. (2018) Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: an overview. Medicines (Basel), 5(3), 93. doi.org/10.3390/medicines5030093.
Wang, Y., Yang, L., Fei, X., Yao, X., Gao, D. & Guo, S. (2019) Antifungal effect of Camellia seed cake extract on Aspergillus flavus. Journal of Food Protection, 82(3), 463-469. doi.org/10.4315/0362-028X.JFP-18-285.
Zhang, T., Qiu, F., Chen, L., Liu, R., Chang, M. & Wang, X. (2021) Identification and in vitro anti-inflammatory activity of different forms of phenolic compounds in Camellia oleifera oil. Food Chemistry, 344, 128660. doi.org/10.1016/j.foodchem.2020.128660.
Zhang, F., Zhu, F., Chen, B., Su, E., Chen, Y. & Cao, F. (2022) Composition, bioactive substances, extraction technologies and the influences on characteristics of Camellia oleifera oil: A review. Food Research International, 156, 111159. doi.org/10.1016/j.foodres.2 022.111159
Zhu, W.F., Wang, C.L., Ye, F., Sun, H.P., Ma, C.Y., Liu, W.Y., Feng, F., Abe, M., Akihisa, T., Zhang, J. (2018) Chemical constituents of the seed cake of Camellia oleifera and their antioxidant and antimelanogenic activities. Chemistry & Biodiversity, 15(7), e1800137. doi.org/10.1002/cbdv.201800137.
Citation Format
How to Cite
Kim, J. H. ., Kim, J. H. ., & Kim, M. Y. (2022). Effect of extraction solvents on antioxidant and skin-whitening potentials of defatted Camellia seed cakes. Journal of Applied and Natural Science, 14(2), 341–348. https://doi.org/10.31018/jans.v14i2.3368
More Citation Formats:
Section
Research Articles