Venkata Kishore Babu Chukka Venkata Ramana Kokkiligadda Swamy AVVS Hari Babu Bollikolla


Dyes harm both aquatic species and humans in wastewaters, which are poisonous as well as carcinogenic. For decades, the adsorption system technique has been widely used to take out dyes from aqueous solutions since it is a trouble-free and successful process. The present study investigated the use of Euphorbia hirta’s leaf powder/stem powder/leaf ash/stem ash for the adsorption of methyl red dye (MRD) from aqueous samples for the first time. MRD aqueous solutions (250 ml, 100 ppm) were incubated for the required contact period with 1.2 gm/l of investigated sorbent with agitation at 100 rpm. The temperature and pH remained maintained at 27 degrees Celsius and 4.0, respectively. The residual amounts of MRD were evaluated by spectrophotometrically measuring MRD absorbance at 464.9 nm. The percent MRD clearance using E. hirta’s leaf powder/stem powder/leaf ash/stem ash showed that the optimal condition of MRD clearance happened at pH unit of 4, 100 ppm concentration of MRD, sorbent dose at 1.2 gm/l, ambient temperature, mechanical shaker agitation speed of 100 rpm.  The optimal equilibration time for highest percentile MRD clearance was 125 min (E. hirta leaf powder), 105 min (E. hirta leaf ash powder and E. hirta stem powder) and 90 min (E. hirta stem ash powder).  Negatively charged chemical groups like –COOH, -CHO, -NH, etc. present in the phytochemicals of E. hirta’s leaf and stem binds to positively charged ions in MRD, as a result, adsorption occurs. For its significant biosorption potential and cheap cost, E. hirta’s leaf powder/stempowder/leaf ash/stem ash can be regarded as alternative biomass for removing MRD from the aqueous solution.




Aqueous system, Biosorbent, Biosorption, Euphorbia hirta, Spectroscopic analysis

Annadurai, G., Juang, R. & Lee, D. (2002). Use of cellulose-based wastes for adsorption of dyes from aqueous solutions. Journal of Hazardous Material, 92(3), 263-274. DOI: 10.1016/S0304-3894(02)00017-1
Azahar, S., Liew, A. G., Suhardy, D., Hafiz, K.F. & Hatim, M. D. I. (2005). Dye Removal from aqueous solution by using adsorption on treated sugarcane bagasse. American Journal of Applied Science, 2(11), 1499-1503. DOI: 10.3844/ajassp.2005.1499.1503.
Basma, A.A., Zakaria, Z., Latha, L.Y. & Sasidharan, S. (2011). Antioxidant activity and phytochemical screening of the methanol extracts of Euphorbia hirta L. Asian Pacific Journal of Tropical Medicine. 4 (5), 386-390. doi: 10.1016/S1995-7645(11)60109-0.
Benkhaya, S., M'rabet, S. & El Harfi, A. (2020). Classifications, properties, recent synthesis and applications of azo dyes. Heliyon, 6(1): e03271. DOI:10.1016/j.heli yon.20 20.e03271
Bhatnagar, A. & Jain, A. K. (2005). A comparative adsorption study with different industrial wastes as adsorbents for the removal of cationic dyes from water. Journal of Colloid and Interface Science, 281 (1), 49-55. DOI: 10.1016/j.jcis.2004.08.07
Chandanshive, V.V., Rane, N.R., Gholave, A.R., Patil, S.M., Jeon, B.H. & Govindwar, S.P. (2016). Efficient decolorization and detoxification of textile industry effluent by Salvinia molesta in lagoon treatment. Environmental Research, 150, 88-96. DOI: 10.1016/j.envres.2016.05.047.
Chung, K.T., Fulk, G. E. & Andrews, A. W. (1981). Mutagenicity testing of some commonly used dyes. Applied Environmental Microbiology, 42 (4), 641-648. DOI: 10.1 128/aem.42.4.641-648.1981
De Luca, P. & Nagy, B.J. (2020). Treatment of water contaminated with reactive black-5 dye by carbon nanotubes. Materials (Basel), 13(23), 5508. DOI:10.3390/ma13235508
Eman, A.A. (2020). Efficient removal of methyl orange from wastewater by polymeric chitosan-iso-vanillin. Open Chemistry Journal, 7, 16-25. DOI: 10.2174/187484220 2007010016
Forgacs, E., Cserhatia, T. & Oros, G. (2004). Removal of synthetic dyes from wastewaters: A review. Environment International, 30 (7), 953-971. DOI: 10.1016/j.envint.2004.02.001
Giwa, A. A., Bello, I. A., Oladipo, M. A., & Aderibigbe, D. O. (2021). Competitive Adsorption of Congo red in Single and Binary Systems Using a Low-cost Adsorbent. Journal of Health & Pollution, 11 (31), 210912. DOI:10.5696/2156-9614-11.31.210912
Hameed, B.H. & Ahmad, A. A. (2009). Batch adsorption of methylene blue from aqueous solution by garlic peel, an agricultural waste biomass. Journal of Hazardous Material, 164(2-3), 870-875. DOI: 10.1016/j.jhazmat.20 08.08.084
Ho, Y. S., Chiang, T. H. & Hsueh, Y. M. (2003). Removal of basic dye from aqueous solution using tree fern as a biosorbent. Process Biochemistry, 40(1), 119-124. DOI: 10.1016/j.procbio.2003.11.035
Imamura, K., Ikeda, E., Nayayasu, T., & Nakanishi, K. (2002). Adsorption behavior of methylene blue and its congeners on a stainless steel surface. Journal of Colloid and Interface Science, 245(1), 50-57. DOI:10.1006/jcis.2001.7967
Jadhav, S.U., Kalme, S.D. & Govindwar, S.P. (2008). Biodegradation of methyl red by galactomyces
geotrichum MTCC 1360. International Biodeterioration and Biodegradation, 62, 135-142. DOI: 10.1016/j.ibio d.2007.12.010
Jain, R. & Sikarwar, S. (2008). Removal of hazardous dye congored from waste material. Journal of Hazardous Material, 152 (3), 942-948. DOI: 10.1016/j.jhazmat.200 7.07.070
Kadam, S.K., Chandanshive, V.V., Rane, N.R., Patil, S.M., Gholave, A.R., Khandare, R.V., Bhosale, A.R., Jeon, B.H. & Govindwar, S.P. (2018). Phytobeds with Fimbristylis dichotoma and Ammannia baccifera for treatment of real textile effluent: An in situ treatment, anatomical studies and toxicity evaluation. Environmental Research, 160, 1-11. DOI: 10.1016/j.envres.2017.09.009.
Kargi, F. & Ozmihci, S.S. (2004). Biosorption performance of powdered activated sludge for removal of different dyestuffs. Enzyme and Microbial Technology, 35(2), 267-271. DOI: 10.1016/j.enzmictec.2004.05.002.
Kaya, N. (2017). A comprehensive study on adsorption behavior of some azo dyes from aqueous solution onto different adsorbents. Water Science Technology, 76 (2), 478-489. DOI: 10.2166/wst.2017.216.
Kokkiligadda, V. R., Pokala, R. K. V., Karumuri, A., & Bollikola, H. B. (2020). Adsorption Potentialities of Bio-Sorbents Derived from Pomegranate in the Removal of Methyl Red Dye from Polluted Waters. Caribbean Journal of Sciences and Technology (CJST), 8(1), 105–118. 
Krishna, B.D., Mahesh, B. & Puspa, L.H. (2020). Adsorptive removal of methyl red from aqueous solution using charred and xanthated Sal (Shorea robusta) Sawdust. Amrita Research Journal, 1 (1), 37-44.
Kumar, S., Malhotra, R., & Kumar, D. (2010). Euphorbia hirta: Its chemistry, traditional and medicinal uses, and pharmacological activities. Pharmacognosy Reviews, 4(7), 58-61. DOI:10.4103/0973-7847.65327
Lakshmi, U.R., Srivastava, V. C., Mall, I. D., & Lataye, D. H. (2009). Rice husk ash as an effective adsorbent: Evaluation of adsorptive characteristics for Indigo Carmine dye. Journal of Environmental Management, 90(2), 710-720. DOI: 10.1016/J.JENVMAN.2008.01.002
Loulidi, I., Boukhlifi, F., Ouchabi, M., Amar, A., Jabri, M., Kali, A., Chraibi, S., Hadey, C. & Aziz, F. (2020). Adsorption of crystal violet onto an agricultural waste residue: kinetics, isotherm, thermodynamics, and mechanism of adsorption. The Scientific World Journal, 2020, article ID 5873521, 9 pages. DOI: 10.1155/2020/5873521
Munir, M., Nazar, M. F., Zafar, M. N., Zubair, M., Ashfaq, M., Hosseini-Bandegharaei, A., Khan, S. U., & Ahmad, A. (2020). Effective Adsorptive Removal of Methylene Blue from Water by Didodecyldimethylammonium Bromide-Modified Brown Clay. ACS omega, 5(27), 16711–16721. DOI: 10.1021/acsomega.0c01613
Maniyam, M. N., Ibrahim, A. L., & Cass, A. E. G. (2020). Decolourization and biodegradation of azo dye methyl red by Rhodococcus strain UCC 0016. Environmental Technology, 41(1), 71-85. DOI: 10.1080/09593330.20 18.1491 634.
Noha, A.M., Ehssan, N., Mohamed, H. (2020). Use of spent oil shale to remove methyl red dye from aqueous solutions. AIMS Materials Science, 7 (3), 338-353. DOI: 10.3934/matersci.2020.3.338
Ofomaja, A. E. (2007). Kinetics and mecanisim of methylene blue sorption onto palm kernal fiber. Process Biochemistry, 40(1), 16-24. DOI: 10.1016/j.procbio.20 06.07.005
Ofomaja, A.E. & Ho, Y.S. (2006). Equilibrium sorption of anionic dye from aqueous solution by palm kiner fiber as sorbent. Dyes Pigment, 74(1), 60-66. DOI: 10.1016/j.dyepig.2006.01.014
Parlayıcı, Ş. & Pehlivan, E. (2021). Biosorption of methylene blue and malachite green on biodegradable magnetic Cortaderia selloana flower spikes: modeling and equilibrium study. International Journal of Phytoremediation, 23 (1): 26-40. DOI: 10.1080/15226514.2020.1788502.
Perera, S. D., Jayawardena, U. A., & Jayasinghe, C. D. (2018). Potential Use of Euphorbia hirta for Dengue: A Systematic Review of Scientific Evidence. Journal of Tropical Medicine, 2018, 2048530. DOI:10.1155/2018/2048530
Potgieter, J. H., Pardesi, C., & Pearson, S. (2021). A kinetic and thermodynamic investigation into the removal of methyl orange from wastewater utilizing fly ash in different process configurations. Environmental Geochemistry and Health, 43 (7), 2539–2550. DOI:10.1007/s10653-020-00567-6
Renita, A.A., Vardhan, K.H., Kumar, P.S., Ngueagni, P.T., Abilarasu, A., Nath, S., Kumari, P. & Saravanan, R. (2021). Effective removal of malachite green dye from aqueous solution in hybrid system utilizing agricultural waste as particle electrodes. Chemosphere, 273, 129634. DOI: 10.1016/j.chemosphere.2021.129634.
Robinson, T., Chandran, B. & Nigam, P. (2002). Removal of dyes from a synthetic textile dye effluent by biosorption on apple pomace and wheat straw. Water Research, 36(11), 2824-2830. DOI: 10.1016/S0043-1354(01)00521-8
Shah, A. P., Parmar, G. R, Sailor, G. U., & Seth, A. K. (2019). Antimalarial Phytochemicals Identification from Euphorbia Hirta against Plasmepsin Protease: An In Silico Approach. Folia Medica (Plovdiv), 61(4), 584-593. DOI: 10.3897/folmed.61.e47965.
Shilpa, G., Haresh, K. & Akshaya, G. (2013). Toxicity analysis of azo Red BS and Methyl Red dye solutions on earthworm (Pheretima phosthuma), micro-organisms, and plants.  Desalination and Water Treatment, 51 (22-24), 4556-4565. DOI: 10.1080/19443994.2012.748637
Singh, K.P., Malik, A. Sinha, S. & Ojha, P. (2008). Liquid-phase adsorption of phenols using activated carbons derived from agricultural waste material. Journal of Hazardous Material, 150(3), 626-641. DOI: 10.1016/j.jhazm at.2007.05.017
Singh, G., & Kumar, P. (2013). Phytochemical study and screening for antimicrobial activity of flavonoids of Euphorbia hirta. International Journal Of Applied & Basic Medical Research, 3(2), 111–116. https://doi.org/10.4103/2229-516X.117082
Sintakindi, A. & Ankamwar, B. (2020). Uptake of Methylene Blue from Aqueous Solution by Naturally Grown Daedalea africana and Phellinus adamantinus Fungi. ACS omega, 5(22), 12905–12914. DOI: 10.1021/acsomega.0c00673
Sunil, R., Virendra, K.S., Avdesh, S.P., Mohit, N. & Kuldeep, R. (2021). Adsorption of methyl red dye from aqueous solution onto eggshell waste material: Kinetics, isotherms and thermodynamic studies. Current Research in Green and Sustainable Chemistry, 4, 100180. DOI:10.1016/j.crgsc.2021.100180.
Tamez, U. M., Islam, M. A., Mahmud, S. & Rukanuzzaman, M. (2009). Adsorptive removal of methylene blue by tea waste. Journal of Hazardous Material, 164(1), 53-60. DOI: 10.1016/j.jhazmat.2008.07.131
Vatsal, S. (2017). Removal of methyl red from waste water using orange peels. International Journal for Scientific Research & Development, 5 (3), 358-360.
Vijaya, P.P. & Sandhya, S. (2003). Decolorization and complete degradation of methyl red by a mixed culture. Environmentalist, 23, 145-149. DOI: 10.1023/A:1024839805387
Xia, M., Liu, L. & Qiu, R. (2018). Anti-inflammatory and anxiolytic activities of Euphorbia hirta extract in neonatal asthmatic rats. AMB Express, 8(1), 179. DOI:10.1186/s13568-018-0707-z.
Xue, S.W., Yin, Z., Yu, J. & Cheng, S. (2008). The removal of basic dyes from aqueous solutions using agricultural by-products. Journal of Hazardous Material, 157(2-3), 374-385. DOI: 10.1016/j.jhazmat.2008.01.004.
Research Articles

How to Cite

Adsorption potential of Euphorbia Hirta’s (leaf and stem) towards methyl red in aqueous systems. (2022). Journal of Applied and Natural Science, 14(2), 411-417. https://doi.org/10.31018/jans.v14i2.3346