Shweta Yadav Anand Mishra


Heavy metals are ubiquitous contaminants that have accompanied man since the earliest ancient times, and unlike other environmental pollutants, they are chemical elements that man does not create or destroy. In the present study, the aim was to determine the biosorption potential of heavy metal-tolerant fungi that were isolated from compost soil samples contaminated by industrial effluents. The isolation was performed on potato dextrose agar (PDA) media supplemented with heavy metals. Chromium-Cr(VI) and nickel-Ni. The most dominant fungal species were found to be Penicillium spp. This fungus was screened for its ability to tolerate heavy metals by the plate diffusion and broth method and was highly tolerant to fungal species. The fungi were assessed for their ability to remove heavy metals from the culture media, and the culture conditions for the fungus were experimentally optimized. The isolated Penicillium species was found to show maximum growth at 35°C with media pH 6 for an incubation period of 168 hours. The isolate was able to tolerate 60-70 ppm concentrations of heavy metals under normal conditions. The ability of the isolate to take up metal was very effective, as after 96 hrs of incubation, it was capable of removing approximately 93.8% of Cr(VI) and 95.6% of Ni from the culture media, and complete uptake was observed after a 144 hr incubation period. The molecular characterization revealed the only isolate to be Penicillium rubens (Accession no. LC536286). The morphological characteristics of this fungus make it capable of biosorption of heavy metals, imparting its bioremediation potential and economic importance.



Download data is not yet available.


Metrics Loading ...




Bioremediation, Biosorption, Effluent, Heavy metals, Penicillium sp.

Ackerley, D. F., Gonzalez C. F., Keyhan M., Blake, R. & Matin, A. (2004). Mechanism of chromate reduction by the Escherichia coli protein, NfsA, and the role of different chromate reductases in minimizing oxidative stress during chromate reduction. Environmental Microbiology, 6(8), 851-860.
Archana, A. & Jaitly, A. K. (2015). Mycoremediation: utilization of fungi for reclamation of heavy metals at their optimum remediation conditions. Biolife, 3(1), 77-106.
Barnett, H. L. (1999). Illustrated genera of imperfect fungi/Hl Barnett and Barry B. Hunter (No. QK625. A1. B3713 3A ED.). Burgess. Minneapolis, Minnesota. 1972.3. ed.
Boonchan, S., Britz, M. L. & Stanley, G. A. (2000). Degradation and mineralization of high-molecular-weight polycyclic aromatic hydrocarbons by defined fungal-bacterial cocultures. Applied and Environmental Microbiology, 66(3), 1007-1019.
Chaney, R. L., Angle, J. S., Broadhurst, C. L., Peters, C. A., Tappero, R. V. & Sparks, D. L. (2007). Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies. Journal of Environmental Quality, 36(5), 1429-1443.
Chen, S. H., Cheow, Y. L., Ng, S. L. & Ting, A. S. Y. (2020). Bioaccumulation and biosorption activities of indoor metal-tolerant Penicillium simplicissimum for removal of toxic metals. International Journal of Environmental Research, 14(2), 235-242.
Fu, Y. Q., Li, S., Zhu, H. Y., Jiang, R.& Yin, L. F. (2012). Biosorption of copper (II) from aqueous solution by mycelial pellets of Rhizopus oryzae. African Journal of Biotechnology, 11(6), 1403-1411.
Haferburg, G., & Kothe, E. (2007). Microbes and metals: interactions in the environment. Journal of Basic Microbiology, 47(6), 453-467.
Hamba, Y. & Tamiru, M. (2016). Mycoremediation of heavy metals and hydrocarbons contaminated environment. Asian J. Nat. Appl. Sci., 5, 2.
Haris, M., Shakeel, A., Hussain, T., Ahmad, G., Ansari, M. & Khan, A. A. (2021). New trends in removing heavy metals from industrial wastewater through microbes. Removal of Emerging Contaminants Through Microbial Processes, 183-205. doi.org/10.1007/978-981-15-5901-3_26
Hassan, A., Pariatamby, A., Ahmed, A., Auta, H. S. & Hamid, F. S. (2019). Enhanced bioremediation of heavy metal contaminated landfill soil using filamentous fungi consortia: a demonstration of bioaugmentation potential. Water, Air, & Soil Pollution, 230(9), 1-20.
Hassen, A., Saidi, N., Cherif, M. & Boudabous, A. (1998). Effects of heavy metals on Pseudomonas aeruginosa and Bacillus thuringiensis. Bioresource Technology, 65(1-2), 73-82.
He, Z., Shentu, J., Yang, X., Baligar, V. C., Zhang, T. & Stoffella, P. J. (2015). Heavy metal contamination of soils: sources, indicators and assessment. J Envie Indicators,9, 17-8.
Jasrotia, S., Kansal, A., & Mehra, A. (2017). Performance of aquatic plant species for phytoremediation of arsenic-contaminated water. Applied Water Science, 7(2), 889-896.
Ksheminska, H., Jaglarz, A., Fedorovych, D., Babyak, L., Yanovych, D., Kaszycki, P. & Koloczek, H. (2003). Bioremediation of chromium by the yeast Pichia guilliermondii: toxicity and accumulation of Cr (III) and Cr (VI) and the influence of riboflavin on Cr tolerance. Microbiological Research, 158(1), 59-67.
Leitao, A. L. (2009). Potential of Penicillium species in the bioremediation field. International Journal of Environmental Research and Public Health, 6(4), 1393-1417.
Lloyd, J. R. (2002). Bioremediation of metals; the application of microorganisms that make and break minerals.Microbiol. Today.29,: 67-9.
Makki, F. M. & Ziarati, P. (2014). Determination of histamine and heavy metal concentrations in tomato pastes and fresh tomato (Solanum lycopersicum) in Iran. Biosci. Biotechnol. Res. Asia, 11(2), 537-544.
Malik, A. & Jaiswal, R. (2000). Metal resistance in Pseudomonas strains isolated from soil treated with industrial wastewater. World Journal of Microbiology and Biotechnology, 16(2), 177-182.
Marr, J., Kremer, S., Sterner, O. & Anke, H. (1996). Transformation and mineralization of halophenols by Penicillium simplicissimum SK9117. Biodegradat ion, 7(2), 165-171.
Martin-Gonzalez, A., Díaz, S., Borniquel, S., Gallego, A. & Gutiérrez, J. C. (2006). Cytotoxicity and bioaccumulation of heavy metals by ciliated protozoa isolated from urban wastewater treatment plants. Research in Microbiology, 157(2), 108-118.
Niu, H., Xu, X. S., Wang, J. H. & Volesky, B. (1993). Removal of lead from aqueous solutions by Penicillium biomass. Biotechnology and Bioengineering, 42(6), 785-787.
Ogbo, E. M. & Okhuoya, J. A. (2011). Bioabsorption of some heavy metals by Pleurotus tuber-regium Fr. Singer (an edible mushroom) from crude oil polluted soils amended with fertilizers and cellulosic wastes. International Journal of Soil science, 6(1), 34-48.
Oyewole, O. A., Zobeashia, S. S. L. T., Oladoja, E. O., Raji, R. O., Odiniya, E. E. & Musa, A. M. (2019). Biosorption of heavy metal polluted soil using bacteria and fungi isolated from soil. SN Applied Sciences, 1(8), 1-8.
Park, D., Yun, Y. S., Jo, J. H. & Park, J. M. (2005). Mechanism of hexavalent chromium removal by dead fungal biomass of Aspergillus niger. Water Research, 39(4), 533-540.
Rai, P. K., Lee, S. S., Zhang, M., Tsang, Y. F. & Kim, K. H. (2019). Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environment International, 125, 365-385.
Sardar, K., Ali, S., Hameed, S., Afzal, S., Fatima, S., Shakoor, M. B. & Tauqeer, H. M. (2013). Heavy metals contamination and what are the impacts on living organisms. Greener Journal of Environmental Management and Public safety, 2(4), 172-179.
Sarma, B., Acharya, C. & Joshi, S. R. (2010). Pseudomonads: a versatile bacterial group exhibiting dual resistance to metals and antibiotics. African Journal of Microbiology Research, 4(25), 2828-2835.
Say, R., Yilmaz, N. & Denizli, A. (2003). Removal of heavy metal ions using the fungus Penicillium canescens. Adsorption Science & Technology, 21(7), 643-650.
Shugaba, A., Nok, A. J., Ameh, D. A. & Lori, J. A. (2011). Studies on some growth related changes in cultures of Aspergillus niger and Aspergillus parasiticus treated with hexavalent chromium and tannic acid. International Journal of Biotechnology & Biochemistry, 7(2), 251-265.
Thenmozhi, R., Arumugam, K., Nagasathya, A., Thajuddin, N. & Paneerselvam, A. (2013). Studies on mycoremediation of used engine oil contaminated soil samples. Adv Appl. Sci. Res., 4(2), 110-8.
Tiwari, S., Singh, S. N. & Garg, S. K. (2013). Microbially enhanced phytoextraction of heavy-metal fly ash amended soil. Communications in Soil Science and Plant Analysis, 44(21), 3161-3176.
Xu, X., Zhang, Z., Huang, Q., & Chen, W. (2018). Biosorption performance of multimetal resistant fungus Penicillium chrysogenum XJ-1 for removal of Cu2+ and Cr6+ from aqueous solutions. Geomicrobiology Journal, 35(1), 40-49.
Yang, Q. W., Lan, C. Y., Wang, H. B., Zhuang, P. & Shu, W. S. (2006). Cadmium in soil–rice system and health risk associated with the use of untreated mining wastewater for irrigation in Lechang, China. Agricultural Water Management, 84(1-2), 147-152.
Ziarati, P., Moslehishad, M. & Mohammad-Makki, F. M. (2016). Novel adsorption method for contaminated water by wild endemic almond: Amygdalus scoparia. Biosciences Biotechnology Research Asia, 13(1), 147-153.
Citation Format
How to Cite
Yadav, S. ., & Mishra, A. . (2022). Fungal biosorption of the heavy metals chromium(VI) and nickel from industrial effluent-contaminated soil. Journal of Applied and Natural Science, 14(1), 233–239. https://doi.org/10.31018/jans.v14i1.3297
More Citation Formats:
Research Articles