##plugins.themes.bootstrap3.article.main##

Nazia Kouser Rawhat Un Nisa Kaisar Ahmad Allie Asghar Ali Shah

Abstract

Nematodes are critical for soil processes, and changes in nematode community structure have the potential to have a significant impact on ecosystem functioning. As a result, fluctuations in nematode diversity and community structure can be used to ascertain the functional biodiversity of a soil. The aim of the present study was to evaluate the effect of different vegetation and soil pH and N on nematode structure and diversity from ten different sites (Jammu, Kathua, Samba, Udhampur, Reasi, Ramban, Rajouri, Poonch, Doda, Kishtwar) of the Jammu division. The highest absolute frequency of plant parasitic nematodes (91-100%) was observed in subtropical forests in Ramban, temperate forests in Doda, while the highest absolute frequency of bacterivorous nematodes (84-87%) was observed in crop soil in Reasi and Jammu. Soil pH had a detrimental effect on nematodes; bacteriovores were abundant at low pH, and plant parasitic at higher pH. The total nitrogen content also increased in all nematode trophic groups except omnivores. Ecological indices such as the enrichment index (EI), channel index (CI) and maturity index (MI) values indicated that crop soil with organic management is more nematode-friendly and has a better soil health status than other soil ecosystems. Nematode community structure indices may be helpful as soil monitoring tools and for assessing ecosystem sustainability and biodiversity.

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Absolute frequency, Community structure, Diversity, Ecological indices, Nematode

References
Thuo, A. K., Karuku, G. N., Kimenju, J. W., Kariuki, G. M., Wendot, P. K. & Malakeberhan, H. (2020). Factors influencing the relationship between nematode communities and edaphic factors on selected soil groups in kenya: vertisols, cambisols and arenosols. Tropical and Subtropical Agroecosystems, 23, 49
Azpilicueta, C., Aruani, M. C., Chaves, E. & Reeb, P. D. (2014). Soil nematode responses to fertilization with ammonium nitrate after six years of unfertilized apple orchard. Span J Agric Res., 353–363
Bongers, T. (1990). The maturity index: an ecological measure of environmental disturbance based on nematode species composition. Oecologia, 83, 14–19.
Bongers, T. (1999). The maturity index, the evolution of nematode life history traits, adaptive radiation and cp-scaling. Plant Soil, 212, 13–22.
Bongers, T. (1988). De Nematoden van Nederland. Stichting Uitgeverij Koninklijke Nederlandse NatuurhistorischeVereniging, Utrecht, 408 p.
Bongers, T., Alkemade, R. & Yeates, G. W. (1991). Interpretation of disturbance induced maturity decrease in marine nematode. assemblages by means of the Maturity Index. Marine Ecology Progress Series, 76, 135–142.
Bongers, T., van der Meulen, H., Korthals, G. (1997). Inverse relationship between the nematode maturity index and plant parasitic index under enriched nutrient conditions. Appl. Soil Ecol., 6, 195–199.
Bongers, T., Bongers, M. (1988). Functional diversity of nematodes. Appl. Soil Ecol., 10, 239–251.
Bremner, J. M. (1996). Nitrogen-total. In: Sparks DL (ed) Methods of Soil Analysis. SSSA Inc., Madison, WI, 1085–1121.
Bulluck, L. R., Barker, K. R., & Ristaino, J. B. (2002). Influences of organic and synthetic soil fertility amendments on nematode trophic groups and community dynamics under tomatoes. Appl. Soil Ecol. 21, 233–250.
Cesarz, S., Reich, P. B., Scheu, S., Ruess, L., Schaefer, M., & Eisenhauer, N. (2015). Nematode functional guilds, not trophic groups, reflect shifts in soil food webs and processes in response to interacting global change factors. Pedobiologia, 58(1), 23-32.
Chung, H., Zak, D. R., Reich, P. B., Ellsworth, D. S. (2007). Plant species richness, elevated CO2, and atmospheric nitrogen deposition alter soil microbial community composition and function. Glob. Chang. Biol., 13, 980–989, http://dx.doi.org/10.1111/j.1365-2486.2007.01313.
Cobb, N.A. (1918). Estimating the nema populations of soil. USDA Technical Circular, 1, 48.
Delgado-Baquerizo, M., Reich, P. B., Trivedi, C., Eldridge, D. J., Abades, S., Alfaro, F.D., Bastida, F., Berhe, A.A., Cutler, N.A., Gallardo, A., et al. (2020). Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat. Ecol. Evol., 4, 210–220. [CrossRef] 22.
Ekschmitt, K., Bakonyi, G., Bongers, M., Bongers, T., Boström, S., Dogan, H., Harrison, A., Kallimanis, A., Nagy, P., O'donnell, A.G. and Sohlenius, B., 1999. Effects of the nematofauna on microbial energy and matter transformation rates in European grassland soils. Plant and Soil, 212(1), pp.45-61.
Ferris, H., & Bongers, T. (2009). Indices developed specifically for analysis of nematode assemblages. Pp. 124–145 in M. J. Wilson and T. Kakouli-Duarte, eds. Nematodes as environmental indicators. Wallingford: CAB International.
Ferris, H., Bongers, T., & de Goede, R. G. M. (2001). A framework for soil food web diagnostics: extension of the nematode faunal analysis concept. Appl. Soil Ecol., 18, 13–29.
Ferris, J. H., Venette, R. C., & Scow, K. M. (2004). Soil management to enhance bacterivore and fungivore nematode populations and their nitrogen mineralisation function, Appl. Soil Ecol., 25, 19e35.
Fu, S., Ferris, H., Brown, D., & Plant, R. (2005). Does positive feedback effect of nematodes on the biomass and activity of their bacteria prey vary with nematode species and population size? Soil Biol. Biochem., 37, 1979-1987
Goralczyk, K. (1998). Nematodes in a coastal dune succession: indicators of soil properties? Appl. Soil Ecol., 9, 465–469.
Gross, N., Bagousse-Pinguet, Y., Liancourt, P., Berdugo, M., Gotelli, N. J., & Maestre, F. T. (2017). Functional trait diversity maximizes ecosystem multifunctionality. Nat. Ecol. Evol., 1, 132. [CrossRef] 20
Hanel, L. 2003. Soil nematodes in cambisol agroecosystems of the Czech Republic. Biólogia Bratislava, 58, 205–16.
Hooper, D. U., Chapin, F. S., Ewel, J. J., Hector, A., Inchausti, P., Lavorel, S., Lawton, J. H., Lodge, D. M., Loreau, M., Naeem, S. and Schmid, B., (2005). Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecol. Mon., 75, 3–5. [CrossRef].
Van Den Hoogen, J., Geisen, S., Routh, D., Ferris, H., Traunspurger, W., Wardle, D. A. & Crowther, T. W. (2019). Soil nematode abundance and functional group composition at a global scale. Nature, 572(7768), 194-198.
Huo, N., Zhao, S., Huang, J., Geng, D., Wang, N. & Yang, P. (2021). Seasonal Stabilities of Soil Nematode Communities and Their Relationships with Environmental Factors in Different Temperate Forest Types on the Chinese Loess Plateau. Forests, 12(2), 246.
Kergunteuil, A., Campos-Herrera, R., Sánchez-Moreno, S., Vittoz, P. & Rasmann, S. (2016). The abundance, diversity, and metabolic foot-print of soil nematodes is highest in high elevation Alpine grasslands. Frontiers in Ecology and Evolution, 4, 12
Körner, C. (2007). The use of ‘altitude’ in ecological research. Trends in Ecology & Evolution, 22, 569–574
Kouser, Y., Shah, A. A., & Rasmann, S. (2021). The functional role and diversity of soil nematodes are stronger at high elevation in the lesser Himalayan Mountain ranges. Ecology and evolution, 11(20), 13793-13804.
LeBauer, D. S., & Treseder, K. K. (2008). Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecol. Lett., 89, 371–379.
Liang, W., Lou, Y. L., Li, Q., Zhong, S., Zhang, X., & Wang, J. (2009). Nematode faunal response to long-term application of nitrogen fertilizer and organic manure in Northeast China. Soil Biology and Biochemistry, 41, 883–890.
Mai, W. F., & Mullin, P. G. (1996). Plant-Parasitic Nematodes. A Pictorial Key to Genera, 5th edn. Comstock Publishing Associates, New-York
Manning, P., van der Plas, F., Soliveres, S., Allan, E., Maestre, F. T., Mace, G., Whittingham, M. J. & Fischer, M. (2018). Redefining ecosystem multifunctionality. Nat. Ecol. Evol., 2, 427–436. [CrossRef] [PubMed] 21.
McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. (2006). Rebuilding community ecology from functional traits. Trends Ecol. Evol., 21, 178–185. [CrossRef]
Mulder, C., Schouten, A. J., Hund-Rinke, K. & Breure, A. M. (2005). The use of nematodes in ecological soil classification and assessment concepts. Ecotoxicology and Environmental Safety, 62, 278-289.
Nisa, R. U., Tantray, A. Y., Kouser, N., Allie, K. A., Wani, S. M., Alamri, S. A. & Shah, A. A. (2021). Influence of ecological and edaphic factors on biodiversity of soil nematodes. Saudi journal of biological sciences, 28(5), 3049-3059.
Pan, F., McLaughlin, Neil B., Yu, Q., Xue, A. G., Xu, Y., Han, X., Li, C. & Zhao, D. (2010). Responses of soil nematode community structure to different long-term fertilizer strategies in the soybean phase of a soybean–wheat-corn rotation. Eur. J. Soil Biol. 46, 105-111.
Pan, K., Gong, P., Wang, J., Wang, Y., Liu, C., Li, W. & Zhang, L. (2015). Applications of nitrate and ammonium fertilizers alter soil nematode food webs in a continuous cucumber cropping system in Southwestern Sichuan, China. Eurasian J. Soil Sci. 4, 287.
Parton, W., Silver, W. L., Burke, I. C., Grassens, L., Harmon, M. E., Currie, W. S., King, J. Y., Adair, E. C., Brandt, L. A., Hart, S. C. & Fasth, B. (2007). Global-scale similarities in nitrogen release patterns during long-term decomposition. Science, 315, 361–364.
Rodriguez-Kabana, R. (1986). Organic and inorganic nitrogen amendments to soil as nematode suppressants. J. Nematol., 18 (2), 129.
Rodriguez-Kabana, R., King, P. & Pope, M. (1981). Combinations of anhydrous ammonia and ethylene dibromide for control of nematodes parasitic of soybeans. Nematropica, 11 (1), 27–41.
Rosa, H. M. & Nahum, M. M. (2012). Practical plant nematology. 1st Edition. Printing Arts Mexico. 677- 696p
Sánchez– moreno, S., Minoshima, H., Ferris, H. & Jackson, L. E. (2006). Linking soil properties to nematode community composition: Effects of soil management on food webs. Nematology, 8 (5), 703-715.
Ugarte, C. M., Zaborski, E. R., & Wander, M. M., (2013). Nematode indicators as integrative measures of soil condition in organic cropping systems. Soil Biol. Biochem., 64, 103–113.
Wasilewska, L. (1994). Artect of age of meadows on succession and diversity in soil. Pedobiologia, 38, 1.
Wang, K. H., McSorley, R. & McSorley, V. (2005). Effects of soil ecosystem management on nematode pests, nutrient cycling, and plant health.
Wilschut, R. A., Geisen, S., Martens, H., Kostenko, O., Hollander, M., Hooven, F. C., Weser, C., Snoek, L. B., Bloem, J., Caković, D., Čelik, T., Koorem, K., Krigas, N., Manrubia, M., Ramirez, K. S., Tsiafouli, M. A., Vreš, B. & Putten, W. H. (2019). Latitudinal variation in soil nem-atode communities under climate warming-related range-expanding and native plants. Global Change Biology, 25, 2714–2726
Yeates, G. W. (2003). Nematodes as soil indicators: functional and biodiversity aspects. Biology and Fertility of Soils, 37, 199–210.
Yeates, G. W., Bongers, T., De Goede, R., Freckman, D.W. & Georgieva, S. (1993). Feeding habits in soil nematode families and genera—an outline for soil ecologists. J. Nematol., 25, 315.
Yeates, G.W., Ferris, H., Moens, T. & Van der Putten, W. H. (2009). The role of nematodes in ecosystems. In Nematodes as Environmental Bioindicators; Wilson, M.J., Kakouli-Duarte, T., Eds.; CABI Publishing: Wallingford, UK, pp. 1–44. [CrossRef].
Section
Research Articles

How to Cite

Nematode diversity and community structure assessment in different vegetations of Jammu division of J & K, India. (2022). Journal of Applied and Natural Science, 14(1), 102-115. https://doi.org/10.31018/jans.v14i1.3275