Article Main

K. Sreeja Vamsi S. Rama Moorthy N. Mary Hemiliamma Y. Raja Rathna Reddy B. Rama Chandra Reddy J. Deepak S. Sravani

Abstract

The problem of antibiotic resistance has garnered too much attention over the last few decades for posing a global hazard to the clinical handling and the inhibition of several deadly infections caused by bacteria. It burdens the world not only clinically but also economically... Antibiotic agents known as carbapenems are a very effective and  typically designated for the treatment of multidrug-resistant (MDR) bacterial infections. To identify a suitable antibiotic combination to be used in vivo, one must be able to determine the synergism between the antibiotics in vitro. Several methods, such as the checkerboard method, multiple-combination bactericidal test, time-kill and E-test, have been used for this purpose. However, the lack of proper standardization procedures, types of bacterial agents, bacterial load, stage of infection and other factors make it very difficult to reproduce or correlate the results with other methods.Carbapenem-destroying lactases, which have recently emerged as mechanisms of resistance, are increasing in number and decreasing the treatment alternatives available. These infections are treated with colistin and tigecycline, but monotherapy may result in clinical breakdown because of a variety of factors. To control these infections, clinicians often choose combinations of drugs over monotherapy. There is an extreme lack of information on synergistic antibiotic combinations accounting for the diverse mechanisms of GNB resistance commonly encountered. The incidence of carbapenem-resistant GNB in Indian articles is also unknown. Therefore, we anticipate that this study may provide methodology for the selection of an appropriate antibiotic combination.

Article Details

Article Details

Keywords

Antibiotic, Carbapenem, Carbapenemase, Checkerboard assay, Synergy, Time kill assay

References
Aaron, S. D., Ferris, W., Henry, D. A., Speert, D. P. & MacDonald, N. E. (2000). Multiple combination bactericidal antibiotic testing for patients with cystic fibrosis infected with Burkholderiacepacia. American Journal of Respiratory and Critical Care Medicine, 161(4), 1206-1212.
Akhter, S., Lund, B. A., Ismael, A., Langer, M., Isaksson, J., Christopeit, T. & Bayer, A. (2018). A focused fragment library targeting the antibiotic resistance enzyme-Oxacillinase-48: Synthesis, structural evaluation and inhibitor design. European Journal of Medicinal Chemistry, 145, 634-648.
Albur, M., Noel, A., Bowker, K., &MacGowan, A. (2012). Bactericidal activity of multiple combinations of tigecycline and colistin against NDM-1-producing Enterobacteriaceae. Antimicrobial Agents and Chemotherapy, 56(6), 3441-3443.
Alrashidi, Amal, Mohammed Jafar, Niamh Higgins, Ciara Mulligan, Carmine Varricchio, Ryan Moseley, VildanCeliksoy, David MJ Houston & Charles M. Heard. (2021). A time-kill assay study on the synergistic bactericidal activity of pomegranate rind extract and Zn (II) against Methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus epidermidis, Escherichia coli, and Pseudomonas aeruginosa. Biomolecules, 11(12), 1889.
Antunes, N. T. & Fisher, J. F. (2014). Acquired class D β-lactamases. Antibiotics, 3(3), 398-434.
Balke, B Hogardt, M., Schmoldt, S., Hoy, L., Weissbrodt, H. & Häussler, S. (2006). Evaluation of the E test for the assessment of synergy of antibiotic combinations against multiresistant Pseudomonas aeruginosa isolates from cystic fibrosis patients. European Journal of Clinical Microbiology and Infectious Diseases, 25(1), 25-30.
Bassetti, M., Nicolini, L., Esposito, S., Righi, E. & Viscoli, C. (2009). Current status of newer carbapenems. Current Medicinal Chemistry, 16(5), 564-575.
Bergen, Phillip J., Brian T. Tsuji, Jurgen B. Bulitta, Alan Forrest, Jovan Jacob, Hanna E. Sidjabat, David L. Paterson, Roger L. Nation & Jian Li. (2011). Synergistic killing of multidrug-resistant Pseudomonas aeruginosa at multiple inocula by colistin combined with doripenem in an in vitro pharmacokinetic/pharmacodynamic model. Antimicrobial Agents and Chemotherapy, 55(12), 5685-5695.
Biancofiore, G., C. Tascini, M. Bisa, G. Gemignani, M. L. Bindi, A. Leonildi, G. Giannotti & F. Menichetti. (2007). Colistin, meropenem and rifampin in a combination therapy for multi-drug-resistant Acinetobacter baumannii multifocal infection. A case report. Minerva anestesiologica, 73(3), 181-186.
Bradley, J. S., Garau, J., Lode, H., Rolston, K. V. I., Wilson, S. E. & Quinn, J. P. (1999). Carbapenems in clinical practice: a guide to their use in serious infection. International Journal of Antimicrobial Agents, 11(2), 93-100.
Bratu, S., Landman, D., Alam, M., Tolentino, E., & Quale, J. (2005). Detection of KPC carbapenem-hydrolyzing enzymes in Enterobacter spp. from Brooklyn, New York. Antimicrobial Agents and Chemotherapy, 49(2), 776-778.
Bratu, S., Landman, D., Haag, R., Recco, R., Eramo, A., Alam, M. & Quale, J. (2005). Rapid spread of carbapenem-resistant Klebsiella pneumoniae in New York City: a new threat to our antibiotic armamentarium. Archives of Internal Medicine, 165(12), 1430-1435.
Bratu, Simona, Mohamad Mooty, SatyenNichani, David Landman, Carl Gullans, Barbara Pettinato, Usha Karumudi, Pooja Tolaney & John Quale (2005). Emergence of KPC-possessing Klebsiella pneumoniae in Brooklyn, New York: epidemiology and recommendations for detection. Antimicrobial Agents and Chemotherapy, 49(7), 3018-3020.
Briceland, L. L., Nightingale, C. H., Quintiliani, R., Cooper, B. W. & Smith, K. S. (1988). Antibiotic streamlining from combination therapy to monotherapy utilizing an interdisciplinary approach. Archives of Internal Medicine, 148(9), 2019-2022.
Bulik, C. C., &Nicolau, D. P. (2011). Double-carbapenem therapy for carbapenemase-producing Klebsiella pneumoniae. Antimicrobial Agents and Chemotherapy, 55(6), 3002-3004.
Bush, K. & Fisher, J. F. (2011). Epidemiological expansion, structural studies, and clinical challenges of new β-lactamases from gram-negative bacteria. Annual review of Microbiology, 65, 455-478.
Bush, K. (2018). Past and present perspectives on β-lactamases. Antimicrobial Agents and Chemotherapy, 62(10), e01076-18.
Cappelletty, D. M. &Rybak, M. J. (1996). Comparison of methodologies for synergism testing of drug combinations against resistant strains of Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 40(3), 677-683.
Cha, R. (2008). In Vitro Activity of Cefepime, Imipenem, Tigecycline, and Gentamicin, Alone and in Combination, Against Extended-Spectrum β-Lactamase-Producing Klebsiella pneumoniae and Escherichia coli. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 28(3), 295-300.
Costa, R. A., Ortega, D. B., Fulgêncio, D. L., Costa, F. S., Araújo, T. F. & Barreto, C. C. (2019). Checkerboard testing method indicates synergic effect of pelgipeptins against multidrug resistant Klebsiella pneumoniae. Biotechnology Research and Innovation, 3(1), 187-191.
Daikos, G.L., Tsaousi, S., Tzouvelekis, L.S., Anyfantis, I., Psichogiou, M., Argyropoulou, A., Stefanou, I., Sypsa, V., Miriagou, V., Nepka, M. & Georgiadou, S., (2014). Carbapenemase-producing Klebsiella pneumoniae bloodstream infections: lowering mortality by antibiotic combination schemes and the role of carbapenems. Antimicrobial Agents and Chemotherapy, 58(4), 2322-2328.
De Pascale, G., Martucci, G., Montini, L., Panarello, G., Cutuli, S.L., Di Carlo, D., Di Gravio, V., Di Stefano, R., Capitanio, G., Vallecoccia, M.S. & Polidori, P. (2017). Double carbapenem as a rescue strategy for the treatment of severe carbapenemase-producing Klebsiella pneumoniae infections: a two-center, matched case–control study. Critical Care, 21(1), 1-10.
Devkota, S. P., Paudel, A., Bhatta, D. R. & Gurung, K. (2020). Carbapenemase among clinical bacterial isolates in Nepal. J Nepal Health Res Counc, 18, 159-165.
Diep, J. K., Jacobs, D. M., Sharma, R., Covelli, J., Bowers, D. R., Russo, T. A. & Rao, G. G. (2017). Polymyxin B in combination with rifampin and meropenem against polymyxin B-resistant KPC-producing Klebsiella pneumoniae. Antimicrobial Agents and Chemotherapy, 61(2), e02121-16.
Doern, C. D. (2014). When does 2 plus 2 equal 5? A review of antimicrobial synergy testing. Journal of Clinical Microbiology, 52(12), 4124-4128.
Dundar, D. & Otkun, M. (2010). In-vitro efficacy of synergistic antibiotic combinations in multidrug resistant Pseudomonas aeruginosa strains. Yonsei Medical Journal, 51(1), 111-116.
Elemam, A., Rahimian, J. & Doymaz, M. (2010). In vitro evaluation of antibiotic synergy for polymyxin B-resistant carbapenemase-producing Klebsiella pneumoniae. Journal of Clinical Microbiology, 48(10), 3558-3562.
Endimiani, A., Hujer, A.M., Perez, F., Bethel, C.R., Hujer, K.M., Kroeger, J., Oethinger, M., Paterson, D.L., Adams, M.D., Jacobs, M.R. & Diekema, D.J. (2009). Characterization of bla KPC-containing Klebsiella pneumoniae isolates detected in different institutions in the Eastern USA. Journal of Antimicrobial Chemotherapy, 63(3), 427-437.
Forsberg, K. J., Reyes, A., Wang, B., Selleck, E. M., Sommer, M. O. & Dantas, G. (2012). The shared antibiotic resistome of soil bacteria and human pathogens. Science, 337(6098), 1107-1111.
Galani, I., Nafplioti, K., Chatzikonstantinou, M. & Souli, M. (2018). In vitro evaluation of double-carbapenem combinations against OXA-48-producing Klebsiella pneumoniae isolates using time–kill studies. Journal of Medical Microbiology, 67(5), 662-668.
Garcia, M. M. (2013). Carbapenemases: A real threat. APUA Newsl, 31, 4-6.
Giamarellou, H. & Poulakou, G. (2009). Multidrug-resistant gram-negative infections. Drugs, 69(14), 1879-1901.
Giannella, M., Trecarichi, E.M., Giacobbe, D.R., De Rosa, F.G., Bassetti, M., Bartoloni, A., Bartoletti, M., Losito, A.R., Del Bono, V., Corcione, S. & Tedeschi, S. (2018). Effect of combination therapy containing a high-dose carbapenem on mortality in patients with carbapenem-resistant Klebsiella pneumoniae bloodstream infection. International Journal of Antimicrobial Agents, 51(2), 244-248.
Gupta, N., Limbago, B. M., Patel, J. B. & Kallen, A. J. (2011). Carbapenem-resistant Enterobacteriaceae: epidemiology and prevention. Clinical Infectious Diseases, 53(1), 60-67.
Hashizume, T., Ishino, F., Nakagawa, J. I., Tamaki, S. & Matsuhashi, M. (1984). Studies on the mechanism of action of imipenem (N-formimidoylthienamycin) in vitro: binding to the penicillin-binding proteins (PBPs) in Escherichia coli and Pseudomonas aeruginosa, and inhibition of enzyme activities due to the PBPs in E. coli. The Journal of Antibiotics, 37(4), 394-400.
He, W., Kaniga, K., Lynch, A. S., Flamm, R. K. & Davies, T. A. (2012). In vitro Etest synergy of doripenem with amikacin, colistin, and levofloxacin against Pseudomonas aeruginosa with defined carbapenem resistance mechanisms as determined by the E test method. Diagnostic Microbiology and Infectious Disease, 74(4), 417-419.
Hirsch, E. B., Guo, B., Chang, K. T., Cao, H., Ledesma, K. R., Singh, M. & Tam, V. H. (2013). Assessment of antimicrobial combinations for Klebsiella pneumoniae carbapenemase–producing K. pneumoniae. The Journal of Infectious Diseases, 207(5), 786-793.
Hirsch, E. B. & Tam, V. H. (2010). Detection and treatment options for Klebsiella pneumoniae carbapenemases (KPCs): an emerging cause of multidrug-resistant infection. Journal of Antimicrobial Chemotherapy, 65(6), 1119-1125.
Hutchings, M. I., Truman, A. W. & Wilkinson, B. (2019). Antibiotics: past, present and future. Current Opinion in Microbiology, 51, 72-80.
Iaconis, J. P., & Sanders, C. C. (1990). Purification and characterization of inducible beta-lactamases in Aeromonas spp. Antimicrobial Agents and Chemotherapy, 34(1), 44-51.
Jahan, S., Davis, H., Ashcraft, D. S. & Pankey, G. A. (2021). Evaluation of the in vitro interaction of fosfomycin and meropenem against metallo-β-lactamase–producing Pseudomonas aeruginosa using Etest and time-kill assay. Journal of Investigative Medicine, 69(2), 371-376.
Katz, L, & Baltz, R. H. (2016). Natural product discovery: past, present, and future. Journal of Industrial Microbiology and Biotechnology, 43(2-3), 155-176.
Kulengowski, B., Rutter, W. C., Campion, J. J., Lee, G. C., Feola, D. J. & Burgess, D. S. (2018). Effect of increasing meropenem MIC on the killing activity of meropenem in combination with amikacin or polymyxin B against MBL-and KPC-producing Enterobacter cloacae. Diagnostic Microbiology and Infectious Disease, 92(3), 262-266.
Kus, J. V., Tadros, M., Simor, A., Low, D. E., McGeer, A. J., Willey, B. M. & Poutanen, S. M. (2011). New Delhi metallo-β-lactamase-1: local acquisition in Ontario, Canada, and challenges in detection. CMAJ, 183(11), 1257-1261.
Kuwabara, S. & Abraham, E. P. (1967). Some properties of two extracellular beta-lactamases from Bacillus cereus 569/H. Biochemical Journal, 103(3), 27C.
Laishram, S., Pragasam, A. K., Bakthavatchalam, Y. D. & Veeraraghavan, B. (2017). An update on technical, interpretative and clinical relevance of antimicrobial synergy testing methodologies. Indian Journal of Medical Microbiology, 35(4), 445-468.
Landman, D., Bratu, S., Alam, M. & Quale, J. (2005). Citywide emergence of Pseudomonas aeruginosa strains with reduced susceptibility to polymyxin B. Journal of Antimicrobial Chemotherapy, 55(6), 954-957.
Le, J., McKee, B., Srisupha-Olarn, W. & Burgess, D. S. (2011). In vitro activity of carbapenems alone and in combination with amikacin against KPC-producing Klebsiella pneumoniae. Journal of Clinical Medicine Research, 3(3), 106.
Lee, G. C. & Burgess, D. S. (2013). Polymyxins and doripenem combination against KPC-producing Klebsiella pneumoniae. Journal of Clinical Medicine Research, 5(2), 97.
Lee, J., Patel, G., Huprikar, S., Calfee, D. P., & Jenkins, S. G. (2009). Decreased susceptibility to polymyxin B during treatment for carbapenem-resistant Klebsiella pneumoniae infection. Journal of Clinical Microbiology, 47(5), 1611-1612.
Letourneau, A., & Calderwood, S. B. (2020). Combination beta-lactamase inhibitors, carbapenems, and monobactams. UpToDate, Waltham, MA.
Levy, S. B. & Marshall, B. (2004). Antibacterial resistance worldwide: causes, challenges and responses. Nature Medicine, 10(12), S122-S129.
Lewis, R. E., Diekema, D. J., Messer, S. A., Pfaller, M. A. & Klepser, M. E. (2002). Comparison of Etest, chequerboard dilution and time–kill studies for the detection of synergy or antagonism between antifungal agents tested against Candida species. Journal of Antimicrobial Chemotherapy, 49(2), 345-351.
Li, Jiaying, Yanjun Fu, Jisheng Zhang, Yongxin Zhao, Xuecai Fan, Lan Yu, Yong Wang & Xiaoli Zhang Chunjiang, Li. (2020). The efficacy of colistin monotherapy versus combination therapy with other antimicrobials against carbapenem-resistant Acinetobacter baumannii ST2 isolates. Journal of Chemotherapy, 32(7), 359-367.
Li, X., Song, Y., Wang, L., Kang, G., Wang, P., Yin, H. & Huang, H. (2021). A potential combination therapy of berberine hydrochloride with antibiotics against multidrug-resistant Acinetobacter baumannii. Frontiers in Cellular and Infection Microbiology, 11, 250.
Lim, S. Z. & Fitzgerald, D. A. (2018). Treating resistant Pseudomonas aeruginosa lung disease in young children with cystic fibrosis. Paediatric Respiratory Reviews, 27, 33-36.
Livermore, D. M., Warner, M., Mushtaq, S., Doumith, M., Zhang, J., & Woodford, N. (2011). What remains against carbapenem-resistant Enterobacteriaceae? Evaluation of chloramphenicol, ciprofloxacin, colistin, fosfomycin, minocycline, nitrofurantoin, temocillin and tigecycline. International Journal of Antimicrobial Agents, 37(5), 415-419.
Musa, D. N. B. (2018). The Outcomes of Carbapenem Resistant Enterobacteriaceae (CRE) UnfectedPatients and their Association with Antibiotic Therapy (Doctoral Dissertation, Universiti Sains Malaysia).
Naas, T., Vandel, L., Sougakoff, W., Livermore, D. M. & Nordmann, P. (1994). Cloning and sequence analysis of the gene for a carbapenem-hydrolyzing class A beta-lactamase, Sme-1, from Serratia marcescens S6. Antimicrobial Agents and Chemotherapy, 38(6), 1262-1270.
Nakayama, R., Inoue-Tsuda, M., Matsui, H., Ito, T. & Hanaki, H. (2021). Classification of the metallo β-lactamase subtype produced by the carbapenem-resistant Pseudomonas aeruginosa isolates in Japan. Journal of Infection and Chemotherapy.
National Committee for Clinical Laboratory Standards, & Barry, A. L. (1999). Methods for determining bactericidal activity of antimicrobial agents: approved guideline (Vol. 19, No. 18). Wayne, PA: National Committee for Clinical Laboratory Standards.
Netopilova, M., Houdkova, M., Urbanova, K., Rondevaldova, J. & Kokoska, L. (2021). Validation of qualitative broth volatilization checkerboard method for testing of essential oils: Dual-column GC–FID/MS analysis and in vitro combinatory antimicrobial effect of Origanum vulgare and Thymus vulgaris against Staphylococcus aureus in liquid and vapor phases. Plants, 10(2), 393.
Norden, C. W., Wentzel, H. & Keleti, E. (1979). Comparison of techniques for measurement of in vitro antibiotic synergism. Journal of Infectious Diseases, 140(4), 629-633.
Nordmann, P., Cuzon, G. & Naas, T. (2009). The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. The Lancet Infectious Diseases, 9(4), 228-236.
Nordmann, P., Mariotte, S., Naas, T., Labia, R. & Nicolas, M. H. (1993). Biochemical properties of a carbapenem-hydrolyzing beta-lactamase from Enterobacter cloacae and cloning of the gene into Escherichia coli. Antimicrobial Agents and Chemotherapy, 37(5), 939-946.
Nordmann, P., Poirel, L., Walsh, T. R. & Livermore, D. M. (2011). The emerging NDM carbapenemases. Trends in Microbiology, 19(12), 588-595.
Odds, F. C. (2003). Synergy, antagonism, and what the chequerboard puts between them. Journal of Antimicrobial Chemotherapy, 52(1), 1-1.
Ontong, J. C., Ozioma, N. F., Voravuthikunchai, S. P. & Chusri, S. (2021). Synergistic antibacterial effects of colistin in combination with aminoglycoside, carbapenems, cephalosporins, fluoroquinolones, tetracyclines, fosfomycin, and piperacillin on multidrug resistant Klebsiella pneumoniae isolates. Plos one, 16(1), e0244673.
Ardoan, B. C. (2012). In vitro synergistic activity of carbapenems in combination with other antimicrobial agents against multidrug-resistant Acinetobacter baumannii. African Journal of Microbiology Research, 6(12), 2985-2992.
Pankey, G. A. & Ashcraft, D. S. (2009). The detection of synergy between meropenem and polymyxin B against meropenem-resistant Acinetobacter baumannii using Etest® and time-kill assay. Diagnostic Microbiology and Infectious Disease, 63(2), 228-232.
Pankuch, G. A., Lin, G., Seifert, H. & Appelbaum, P. C. (2008). Activity of meropenem with and without ciprofloxacin and colistin against Pseudomonas aeruginosa and Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 52(1), 333-336.
Papoutsaki, V., Galani, I., Papadimitriou, E., Karantani, I., Karaiskos, I. & Giamarellou, H. (2020). Evaluation of in vitro methods for testing tigecycline combinations against carbapenemase-producing Klebsiella pneumoniae isolates. Journal of Global Antimicrobial Resistance, 20, 98-104.
Patel, S. (2012). NDM-1: The newest superbug?. Nursing, 2020, 42(4), 67-68.
Paul, Mical, Yehuda Carmeli, Emanuele Durante-Mangoni, Johan W. Mouton, Evelina Tacconelli, Ursula Theuretzbacher, Cristina Mussini & Leonard Leibovici. (2014). Combination therapy for carbapenem-resistant Gram-negative bacteria. Journal of Antimicrobial Chemotherapy, 69(9), 2305-2309.
Peri, A. M., Doi, Y., Potoski, B. A., Harris, P. N., Paterson, D. L. & Righi, E. (2019). Antimicrobial treatment challenges in the era of carbapenem resistance. Diagnostic Microbiology and Infectious Disease, 94(4), 413-425.
Pfaller, M. A., Huband, M. D., Streit, J. M., Flamm, R. K. & Sader, H. S. (2018). Surveillance of tigecycline activity tested against clinical isolates from a global (North America, Europe, Latin America and Asia-Pacific) collection (2016). International Journal of Antimicrobial Agents, 51(6), 848-853.
Poirel, L., Fortineau, N. & Nordmann, P. (2011). International transfer of NDM-1-producing Klebsiella pneumoniae from Iraq to France. Antimicrobial Agents and Chemotherapy, 55(4), 1821-1822.
Poirel, L., Kieffer, N. & Nordmann, P. (2016). In vitro evaluation of dual carbapenem combinations against carbapenemase-producing Enterobacteriaceae. Journal of Antimicrobial Chemotherapy, 71(1), 156-161.
Poirel, L., Potron, A. & Nordmann, P. (2012). OXA-48-like carbapenemases: the phantom menace. Journal of Antimicrobial Chemotherapy, 67(7), 1597-1606.
Pongpech, P., Amornnopparattanakul, S., Panapakdee, S., Fungwithaya, S., Nannha, P., Dhiraputra, C. & Leelarasamee, A. (2011). Antibacterial activity of carbapenem-based combinations againts multidrug-resistant Acinetobacter baumannii. Journal of the Medical Association of Thailand, 93(2), 161.
Ramadan, R. A., Gebriel, M. G., Kadry, H. M. & Mosallem, A. (2018). Carbapenem-resistant Acinetobacter baumannii and Pseudomonas aeruginosa: characterization of carbapenemase genes and E-test evaluation of colistin-based combinations. Infection and Drug Resistance, 11, 1261.
Ranu, S. O. N. İ., Gupta, V., Datta, P., Gombar, S. & Chander, J. (2019). Comparative Evaluation of In-vitro Synergy Testing Methods in Carbapenem-Resistant Acinetobacter Species. Journal of Microbiology and Infectious Diseases, 9(01), 23-33.
Rasmussen, B. A., Bush, K., Keeney, D., Yang, Y., Hare, R., O'Gara, C. & Medeiros, A. A. (1996). Characterization of IMI-1 beta-lactamase, a class A carbapenem-hydrolyzing enzyme from Enterobacter cloacae. Antimicrobial agents and chemotherapy, 40(9), 2080-2086.
Ratner, P. H., Hampel, F., Van Bavel, J., Amar, N. J., Daftary, P., Wheeler, W. & Sacks, H. (2008). Combination therapy with azelastine hydrochloride nasal spray and fluticasone propionate nasal spray in the treatment of patients with seasonal allergic rhinitis. Annals of Allergy, Asthma & Immunology, 100(1), 74-81.
Rossolini, G. M., Arena, F., Pecile, P. & Pollini, S. (2014). Update on the antibiotic resistance crisis. Current Opinion in Pharmacology, 18, 56-60.
Saiman, L. (2007). Clinical utility of synergy testing for multidrug-resistant Pseudomonas aeruginosa isolated from patients with cystic fibrosis: ‘the motion for’. Paediatric Respiratory Reviews, 8(3), 249-255.
Saino, Y., Kobayashi, F., Inoue, M. & Mitsuhashi, S. (1982). Purification and properties of inducible penicillin beta-lactamase isolated from Pseudomonas maltophilia. Antimicrobial Agents and Chemotherapy, 22(4), 564-570.
Sands, M., McCarter, Y. & Sanchez, W. (2007). Synergy testing of multidrug resistant Acinetobacter baumanii against tigecycline and polymyxin using an E-test methodology. European Journal of Clinical Microbiology & Infectious Diseases, 26(7), 521-522.
Sanschagrin, F., Couture, F. & Levesque, R. C. (1995). Primary structure of OXA-3 and phylogeny of oxacillin-hydrolyzing class D beta-lactamases. Antimicrobial Agents and Chemotherapy, 39(4), 887-893.
Figueredo, A. C. F., de Freitas, N. L., Dalmolin, T. V. & Brandão, F. (2021). Pseudomonas aeruginosa: panorama do perfil de resistênciaaoscarbapenêmicos no Brasil. Brazilian Journal of Development, 7(1), 9661-9672.
Schmid, A., Wolfensberger, A., Nemeth, J., Schreiber, P. W., Sax, H. & Kuster, S. P. (2019). Monotherapy versus combination therapy for multidrug-resistant Gram-negative infections: Systematic Review and Meta-Analysis. Scientific Reports, 9(1), 1-11.
Scudeller, L., Righi, E., Chiamenti, M., Bragantini, D., Menchinelli, G., Cattaneo, P., Giske, C.G., Lodise, T., Sanguinetti, M., Piddock, L.J. & Franceschi, F., (2021). Systematic review and meta-analysis of in vitro efficacy of antibiotic combination therapy against carbapenem-resistant Gram-negative bacilli. International Journal of Antimicrobial Agents, 57(5), 106344.
Sheng, W. H., Wang, J. T., Li, S. Y., Lin, Y. C., Cheng, A., Chen, Y. C. & Chang, S. C. (2011). Comparative in vitro antimicrobial susceptibilities and synergistic activities of antimicrobial combinations against carbapenem-resistant Acinetobacter species: Acinetobacter baumannii versus Acinetobacter genospecies 3 and 13TU. Diagnostic Microbiology and Infectious Disease, 70(3), 380-386.
Smith, S., Ratjen, F., Remmington, T. & Waters, V. (2020). Combination antimicrobial susceptibility testing for acute exacerbations in chronic infection of Pseudomonas aeruginosa in cystic fibrosis. Cochrane Database of Systematic Reviews, (5).
Soeung, V., Lu, S., Hu, L., Judge, A., Sankaran, B., Prasad, B. V. & Palzkill, T. (2020). A drug-resistant β-lactamase variant changes the conformation of its active-site proton shuttle to alter substrate specificity and inhibitor potency. Journal of Biological Chemistry, 295(52), 18239-18255.
Song, J. Y., Kee, S. Y., Hwang, I. S., Seo, Y. B., Jeong, H. W., Kim, W. J. & Cheong, H. J. (2007). In vitro activities of carbapenem/sulbactam combination, colistin, colistin/rifampicin combination and tigecycline against carbapenem-resistant Acinetobacter baumannii. Journal of Antimicrobial Chemotherapy, 60(2), 317-322.
Souli, M., Galani, I. & Giamarellou, H. (2008). Emergence of extensively drug-resistant and pandrug-resistant Gram-negative bacilli in Europe. Eurosurveillance, 13(47), 19045.
Souli, M., Rekatsina, P. D., Chryssouli, Z., Galani, I., Giamarellou, H. & Kanellakopoulou, K. (2009). Does the activity of the combination of imipenem and colistin in vitro exceed the problem of resistance in metallo-β-lactamase-producing Klebsiella pneumoniae isolates?. Antimicrobial Agents and Chemotherapy, 53(5), 2133-2135.
Sopirala, M. M., Mangino, J. E., Gebreyes, W. A., Biller, B., Bannerman, T., Balada-Llasat, J. M. & Pancholi, P. (2010). Synergy testing by Etest, microdilution checkerboard, and time-kill methods for pan-drug-resistant Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 54(11), 4678-4683.
Srinivasan, A., & Patel, J. B. (2008). Klebsiella pneumoniae carbapenemase–producing organisms: an ounce of prevention really is worth a pound of cure. Infection Control & Hospital Epidemiology, 29(12), 1107-1109.
Stein, C., Makarewicz, O., Bohnert, J. A., Pfeifer, Y., Kesselmeier, M., Hagel, S. & Pletz, M. W. (2015). Three dimensional checkerboard synergy analysis of colistin, meropenem, tigecycline against multidrug-resistant clinical Klebsiella pneumonia isolates. PloS one, 10(6), e0126479.
Sun, Qingyang, Yan Yang, Wenjun Wei, Di Lin, Jian Chen, Xianming Zeng, Jun Cheng & Changgui Sun. (2018). Evaluation on the preliminary classification of carbapenemase in gram-negative rods by the inhibitor enhanced carbapenem inactivation method. Chinese Journal of Clinical Laboratory Science, 14-18.
Zeng, Z., Li, Y., Pan, Y., Lan, X., Song, F., Sun, J., Zhou, K., Liu, X., Ren, X., Wang, F. & Hu, J.(2018). Cancer-derived exosomal miR-25-3p promotes pre-metastatic niche formation by inducing vascular permeability and angiogenesis. Nature communications, 9(1), 1-14.
Tan, C. H., Li, J. & Nation, R. L. (2007). Activity of colistin against heteroresistant Acinetobacter baumannii and emergence of resistance in an in vitro pharmacokinetic/pharmacodynamic model. Antimicrobial Agents and Chemotherapy, 51(9), 3413-3415.
Tapalsky, D. V. (2018). Susceptibility to combinations of antibiotics of carbapenemase-producing nosocomial strains of gram-negative bacteria isolated in Belarus. Clinical Microbiology and Antimicrobial Chemotherapy, 20(3).
Tascini, Carlo, Enrico Tagliaferri, Tommaso Giani, Alessandro Leonildi, Sarah Flammini, Beatrice Casini, Russell Lewis, Simone Ferranti, Gian Maria Rossolini & Francesco Menichetti. (2013). Synergistic activity of colistin plus rifampin against colistin-resistant KPC-producing Klebsiella pneumoniae. Antimicrobial agents and chemotherapy, 57(8), 3990-3993.
Tateda, K., Ishii, Y., Matsumoto, T. & Yamaguchi, K. (2006). ‘Break-point Checkerboard Plate ’for screening of appropriate antibiotic combinations against multidrug-resistant Pseudomonas aeruginosa. Scandinavian Journal of Infectious Diseases, 38(4), 268-272.
Taylor, P. C., Schoenknecht, F. D., Sherris, J. C. & Linner, E. C. (1983). Determination of minimum bactericidal concentrations of oxacillin for Staphylococcus aureus: influence and significance of technical factors. Antimicrobial Agents and Chemotherapy, 23(1), 142-150.
Thakuria, B. & Lahon, K. (2013). The beta lactam antibiotics as an empirical therapy in a developing country: an update on their current status and recommendations to counter the resistance against them. Journal of Clinical and Diagnostic Research: JCDR, 7(6), 1207.
Tripodi, M. F., Durante-Mangoni, E., Fortunato, R., Utili, R. & Zarrilli, R. (2007). Comparative activities of colistin, rifampicin, imipenem and sulbactam/ampicillin alone or in combination against epidemic multidrug-resistant Acinetobacter baumannii isolates producing OXA-58 carbapenemases. International Journal of Antimicrobial Agents, 30(6), 537-540.
Urban, C., Mariano, N. & Rahal, J. J. (2010). In vitro double and triple bactericidal activities of doripenem, polymyxin B, and rifampin against multidrug-resistant Acinetobacter baumannii, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Escherichia coli. Antimicrobial Agents and Chemotherapy, 54(6), 2732-2734.
Ventola, C. L. (2015). The antibiotic resistance crisis: part 1: causes and threats. Pharmacy and Therapeutics, 40(4), 277.
Wareham, D. W. & Bean, D. C. (2006). In-vitro activity of polymyxin B in combination with imipenem, rifampicin and azithromycin versus multidrug resistant strains of Acinetobacter baumannii producing OXA-23 carbapenemases. Annals of Clinical Microbiology and Antimicrobials, 5(1), 1-5.
White, R. L., Burgess, D. S., Manduru, M. & Bosso, J. A. (1996). Comparison of three different in vitro methods of detecting synergy: time-kill, checkerboard, and E test. Antimicrobial Agents and Chemotherapy, 40(8), 1914-1918.
Willing, S., Dyer, E., Schneewind, O. & Missiakas, D. (2020). FmhA and FmhC of Staphylococcus aureus incorporate serine residues into peptidoglycan cross-bridges. Journal of Biological Chemistry, 295(39), 13664-13676.
Woodford, N., Tierno Jr, P.M., Young, K., Tysall, L., Palepou, M.F.I., Ward, E., Painter, R.E., Suber, D.F., Shungu, D., Silver, L.L. & Inglima, K., (2004). Outbreak of Klebsiella pneumoniae producing a new carbapenem-hydrolyzing class A β-lactamase, KPC-3, in a New York medical center. Antimicrobial Agents and Chemotherapy, 48(12), 4793-4799.
Wu, H. S., Chen, T. L., Chen, I. C. J., Huang, M. S., Wang, F. D., Fung, C. P. & Lee, S. D. (2010). First identification of a patient colonized with Klebsiella pneumoniae carrying blaNDM-1 in Taiwan. Journal of the Chinese Medical Association, 73(11), 596-598.
Xipell, M., Bodro, M., Marco, F., Martínez, J. A. & Soriano, A. (2017). Successful treatment of three severe MDR or XDR Pseudomonas aeruginosa infections with ceftolozane/tazobactam. Future Microbiology, 12(14), 1323-1326.
Yigit, Hesna, Anne Marie Queenan, Gregory J. Anderson, Antonio Domenech-Sanchez, James W. Biddle, Christine D. Steward, Sebastian Alberti, Karen Bush & Fred C. Tenover. (2001). Novel carbapenem-hydrolyzing β-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrobial Agents and Chemotherapy, 45(4), 1151-1161.
Yim, Haejun, Heungjeong Woo, Wonkeun Song, Min-Jeong Park, Hyun Soo Kim, Kyu Man Lee, Jun Hur & Man-Seung Park (2011). Time-kill synergy tests of tigecycline combined with imipenem, amikacin, and ciprofloxacin against clinical isolates of multidrug-resistant Klebsiella pneumoniae and Escherichia coli. Annals of Clinical & Laboratory Science, 41(1), 39-43.
Yoon, J., Urban, C., Terzian, C., Mariano, N., & Rahal, J. J. (2004). In vitro double and triple synergistic activities of polymyxin B, imipenem, and rifampin against multidrug-resistant Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 48(3), 753-757.
Zavascki, A. P., Bulitta, J. B. & Landersdorfer, C. B. (2013). Combination therapy for carbapenem-resistant Gram-negative bacteria. Expert Review of Anti-infective Therapy, 11(12), 1333-1353.
Zhanel, G.G., Lawrence, C.K., Adam, H., Schweizer, F., Zelenitsky, S., Zhanel, M., Lagacé-Wiens, P.R., Walkty, A., Denisuik, A., Golden, A. & Gin, A.S. (2018). Imipenem- relebactam and meropenem–vaborbactam: two novel carbapenem-β-lactamase inhibitor combinations. Drugs, 78(1), 65-98.
Zusman, Oren, Tomer Avni, Leonard Leibovici, Amos Adler, Lena Friberg, Theodouli Stergiopoulou, Yehuda Carmeli & Mical Paul. (2013). Systematic review and meta-analysis of in vitro synergy of polymyxins and carbapenems. Antimicrobial Agents and Chemotherapy, 57(10), 5104-5111.
Section
Research Articles

How to Cite

A review of antibiotic synergy in carbapenemase-producing bacteria. (2022). Journal of Applied and Natural Science, 14(1), 148-162. https://doi.org/10.31018/jans.v14i1.3248