##plugins.themes.bootstrap3.article.main##

Afrah Jawad Abd AL-Zwaid Hussein Oleiwi Muttaleb Al-Dahmoshi

Abstract

Pseudomonas aeruginosa, one of the majority of common opportunistic infections, has become a public health concern, exhibiting intrinsic and acquired resistance to a wide range of antimicrobials. The present work aimed to study the correlation between the P. aeruginosa efflux pump mexAB-oprM genes and antibiotic resistance to different types of antibiotics. All 79 isolates were screened by Pseudomonas chromogenic agar, which was used as a selective medium for the isolation of P. aeruginosa. After incubation at 37°C for 24 hr, the results were confirmed by PCR using specific primer pairs for the 16S rDNA gene of Pseudomonas spp. and P. aeruginosa for identification of the isolates. MexABoprM genes were investigated by PCR. The antibiotic susceptibility test was accomplished according to CLSI-2021 using the disc diffusion method for 13 antibiotics. The results revealed that the antibiotic susceptibility of P. aeruginosa was highly resistant to ceftazidime (93.6%) and cefepime (77.2%). In comparison, high sensitivity for imipenem (77.2%) and meropenem (67%) was observed. The antibiotic resistance patterns revealed that 38% of isolates were MDR multidrug resistant and 41% were non-MDR, and the mexA(65\79), mexB(49\79) and oprM (37\79) genes were distributed as mexA 83.5%, mexB 63.29% and oprM 48.1%, respectively. The present study concluded that mexABoprM may be highly associated with resistance to ceftazidime and cefepime and moderately associated with piperacillin, gentamicin and tobramycin.

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Antibiotic resistance, Efflux pump, mexABoprM, Pseudomonas aeruginosa

References
Al Muqati, H., Al Turaiki, A., Al Dhahri, F., Al Enazi, H. & Althemery, A. (2021). Superinfection rate among the patients treated with carbapenem versus piperacillin/tazobactam: Retrospective observational study. Journal of Infection and Public Health, 14(3), 306–310. https://doi.org/10.1016/j.jiph.2020.11.015, PubMed: 33618274
Al-Derzi, N. (2012). Pattern of resistance to pseudomonas infection in the north of Iraq: Emphasis on the potential role of a combination antibiogram. Iraqi. Journal of Community Medicine, 11, 193–198.
Aljanaby, A. A. J. & Aljanaby, I. A. J. (2018). Prevalence of aerobic pathogenic bacteria isolated from patients with burn infection and their antimicrobial susceptibility patterns in al-Najaf City, Iraq-a three-year cross-sectional study. F1000Research, 7,1157. https://doi.org/10.12688/f1000research.15088.1
Arabestani, M. R., Rajabpour, M., Yousefi Mashouf, R., Alikhani, M. Y. & Mousavi, S. M. (2015). Expression of efflux pump MexAB-OprM and OprD of Pseudomonas aeruginosa strains isolated from clinical samples using qRT–PCR. Archives of Iranian Medicine. American Institute of Mathematics, 008, PMID, 18(2), 102–108. https://doi.org/: 015182. PubMed: 25644798
Bassetti, M., Vena, A., Croxatto, A., Righi, E. & Guery, B. (2018). How to manage Pseudomonas aeruginosa infections. Drugs in Context, 7, 212527. https://doi.org/10.7573/dic.212527, PubMed: 29872449
Breidenstein, E. B., de la Fuente-Núñez, C. & Hancock, R. E. (2011). Pseudomonas aeruginosa: All roads lead to resistance. Trends in Microbiology, 19(8), 419–426. https://doi.org/10.1016/j.tim.2011.04.005, PubMed: 21664819
Clinical and Laboratory Standards Institute (2021). Performance standards for antimicrobial susceptibility testing. 29ed. Clinical and Laboratory Standards Institute. Supplement M100, S29.
Coetzee, E., Rode, H. & Kahn, D. (2013). Pseudomonas aeruginosa burn wound infection in a dedicated paediatric burns unit. South African Journal of Surgery. 51(2), 50–53. https://doi.org/10.7196/sajs.1134, PubMed: 23725892
Fazeli, H., Nasr Esfahani, B., Sattarzadeh, M. & Mohammadi Barzelighi, H. (2017). Antibiotyping and genotyping of Pseudomonas aeruginosa strains isolated from Mottahari hospital in Tehran, Iran by ERIC-PCR. Infect. Epidemiol. Microbiol., 3(2), 41–45.
Ghanbarzadeh Corehtash, Z., Khorshidi, A., Firoozeh, F., Akbari, H. & Mahmoudi Aznaveh, A. (2015). Biofilm formation and virulence factors among Pseudomonas aeruginosa isolated from burn patients. Jundishapur Journal of Microbiology, 8(10), e22345. https://doi.org/10.5812/jjm.22345, PubMed: 26587205
Glavier, M., Puvanendran, D., Salvador, D., Decossas, M., Phan, G., Garnier, C., Frezza, E., Cece, Q., Schoehn, G., Picard, M., Taveau, J. C., Daury, L., Broutin, I. & Lambert, O. (2020). Antibiotic export by MexB multidrug efflux transporter is allosterically controlled by a MexA-OprM chaperone-like complex. Nature Communications, 11(1), 4948. https://doi.org/10.1038/s41467-020-18770-5
Horna, G., López, M., Guerra, H., Saénz, Y. & Ruiz, J. (2018). Interplay between MexAB-OprM and MexEF-OprN in clinical isolates of Pseudomonas aeruginosa. Scientific Reports, 8(1), 16463. https://doi.org/10.1038/s41598-018-34694-z
Hussein, Z. K., Kadhim, H. S. & Hassan, J. S. (2018). Detection of new Delhi metallo-beta-lactamase-1 (blaNDM-1) in carbapenem-resistant pseudomonas aeruginosa isolated from clinical samples in Wāsit hospitals. Iraqi JMS, 16(3), 239–246. https://doi.org/10.22578. IJMS.
Juhi, T., Bibhabati, M., Archana, T., Poonam, L. & Vinita, D. (2009). Pseudomonas aeruginosa meningitis in post neurosurgical patients. Neurology Asia, 14(2), 95–100.
Kateete, D. P., Nakanjako, R., Okee, M., Joloba, M. L., & Najjuka, C. F. (2017 ). Genotypic diversity among multidrug resistant Pseudomonas aeruginosa and Acinetobacter species at Mulago Hospital in Kampala, Uganda. BMC Research Notes, 10(1), 284. https://doi.org/10.1186/s13104-017-2612-y, PubMed: 28705201
Lambert, P. A. (2002). Mechanisms of antibiotic resistance in Pseudomonas aeruginosa. Journal of the Royal Society of Medicine, 95, Suppl. 41, 22–26. PubMed: 12216271
Lila, G., Mulliqi-Osmani, G., Bajrami, R., Kurti, A., Azizi, E. & Raka, L. (2017 ). The prevalence and resistance patterns of Pseudomonas aeruginosa in a tertiary care hospital in Kosovo. Infezioni in Medicina, 25(1), 21–26. PubMed: 28353451
Livermore, D. M. (2001). Of pseudomonas, porins, pumps and carbapenems. Journal of Antimicrobial Chemotherapy, 47(3), 247–250. https://doi.org/10.1093/jac/47.3.247, PubMed: 11222556
Livermore, D. M., Andrews, J. M., Hawkey, P. M., Ho, P. L., Keness, Y., Doi, Y., Paterson, D. & Woodford, N. (2012 ). Are susceptibility tests enough, or should laboratories still seek ESBLs and carbapenemases directly? Journal of Antimicrobial Chemotherapy, 67(7), 1569–1577. https://doi.org/10.1093/jac/dks088
Mirzaei, B., Bazgir, Z. N., Goli, H. R., Iranpour, F., Mohammadi, F. & Babaei, R. (2020 ). Prevalence of multidrug resistant (MDR) and extensively drug-resistant (XDR) phenotypes of Pseudomonas aeruginosa and Acinetobacter baumannii isolated in clinical samples from northeast of Iran. BMC Research Notes, 13(1), 380. https://doi.org/10.1186/s13104-020-05224-w, PubMed: 32778154
Moosavi, S. M., Pouresmaeil, O., Zandi, H., Emadi, S., Akhavan, F., Torki, A. & Astani, A. (2020 ). The Evaluation of antibiotic Resistance and nalB Mutants in Pseudomonas eruginosa Isolated from Burnt Patients of Shohada Mehrab Yazd Hospital Burn Ward. Reports of Biochemistry and Molecular Biology, 9(2), 140–146. https://doi.org/10.29252/rbmb.9.2.140, PubMed: 33178862
Mulcahy, L. R., Burns, J. L., Lory, S. & Lewis, K. (2010 ). Emergence of Pseudomonas aeruginosa strains producing high levels of persister cells in patients with cystic fibrosis. Journal of Bacteriology, 192(23), 6191–6199. https://doi.org/10.1128/JB.01651-09, PubMed: 20935098
Munita, J. M., & Arias, C. A. (2016). Mechanisms of antibiotic resistance. Microbiology Spectrum, 4(2), 4–2. https://doi.org/10.1128/microbiolspec.VMBF-0016-2015
Nikaido, H., Nikaido, K. & Harayama, S. (1991). Identifi cation and characterization of porins in Pseudomonas aeruginosa. Journal of Biological Chemistry, 266(2), 770–779.https://doi.org/10.1016/S0021-9258(17)35239-0, PubMed: 1702438
Othman, N., Babakir-Mina, M., Noori, C. K. & Rashid, P. Y. (2014 ). Pseudomonas aeruginosa infection in burn patients in Sulaimaniyah, Iraq: Risk factors and antibiotic resistance rates. Journal of Infection in Developing Countries, 8(11), 1498–1502. https://doi.org/10.3855/jidc.4707, PubMed: 25390066
Pang, Z., Raudonis, R., Glick, B. R., Lin, T. J. & Cheng, Z. (2019 . Antibiotic resistance in Pseudomonas aeruginosa: Mechanisms and alternative therapeutic strategies. Biotechnology Advances, 37(1), 177–192. https://doi.org/10.1016/j.biotechadv.2018.11.013, PubMed: 3050 0353
Pérez, A., Gato, E., Pérez-Llarena, J., Fernández-Cuenca, F., Gude, M. J., Oviaño, M., Pachón, M. E., Garnacho, J., González, V., Pascual, Á., Cisneros, J. M., & Bou, G. (2019). High incidence of MDR and XDR Pseudomonas aeruginosa isolates obtained from patients with ventilator-associated pneumonia in Greece, Italy and Spain as part of the MagicBullet clinical trial. Journal of Antimicrobial Chemotherapy, 74(5), 1244–1252. https://doi.org/10.1093/jac/dkz030, PubMed: 30753505
Perletti, G., Magri, V., Wagenlehner, F. M. E. & Naber, K. G. (2010). CXA-101. Drugs of the Fut., 35(12), 977–986. https://doi.org/10.1358/dof.20 10.035.012.1541551
Pesingi, P. V., Singh, B. R., Pesingi, P. K., Bhardwaj, M., Singh, S. V., Kumawat, M., Sinha, D. K., & Gandham, R. K. (2019). MexAB-OprM efflux pump of Pseudomonas aeruginosa offers resistance to carvacrol: A herbal antimicrobial agent. Frontiers in Microbiology, 10, 2664. https://doi.org/10.3389/fmicb.2019.02664
Plésiat, P. & Nikaido, H. (1992 May). Outer membranes of Gram-negative bacteria are permeable to steroid probes. Molecular Microbiology, 6(10), 1323–1333. https://doi.org/10.1111/j.1365-2958.1992.tb00853.x, PubMed: 1640833
Preheim, L. C., Penn, R. G., Sanders, C. C., Goering, R. V. & Giger, D. K. (1982 ). Emergence of resistance to beta-lactam and aminoglycoside antibiotics during moxalactam therapy of Pseudomonas aeruginosa infections. Antimicrobial Agents and Chemotherapy, 22(6), 1037–1041. https://doi.org/10.1128/AAC.22.6.1037, PubMed: 6218778
Rehman, A., Patrick, W. M. & Lamont, I. L. (2019). Mechanisms of ciprofloxacin resistance in Pseudomonas aeruginosa: New approaches to an old problem. Journal of Medical Microbiology, 68(1), 1–10. https://doi.org/10.1099/jmm.0.000873, PubMed: 30605076
Savari, M., Rostami, S., Ekrami, A. & Bahador, A. (2016). Characterization of toxin-antitoxin (TA) systems in Pseudomonas aeruginosa clinical isolates in Iran. Jundishapur Journal of Microbiology, 9(1), e26627. https://doi.org/10.5812/jjm.26627, PubMed: 27099681
Sedighi, M., Moghoofei, M., Kouhsari, E., Pournajaf, A., Emadi, B., Tohidfar, M. & Gholami, M. (2015). In silico analysis and molecular modelling of RNA polymerase, sigma S (RpoS) protein in Pseudomonas aeruginosa PAO1. Reports of Biochemistry and Molecular Biology, 4(1), 32–42. PubMed: 26989748.
Spilker, T., Coenye, T., Vandamme, P. & LiPuma, J. J. (2004). PCR-based assay for differentiation of Pseudomonas aeruginosa from other Pseudomonas species recovered from cystic fibrosis patients. Journal of Clinical Microbiology, 42(5), 2074–2079. https://doi.org/10.1128/JCM.42.5.2074-2079.2004
Sugawara, E., Nagano, K. & Nikaido, H. (2010). Factors affecting the folding of Pseudomonas aeruginosa OprF porin into the one-domain open conformer. mBio, 1(4), e00228-10. https://doi.org/10.1128/mBio.00228-10, PubMed: 20978537
Sugawara, E., Nestorovich, E. M., Bezrukov, S. M. & Nikaido, H. (2006). Pseudomonas aeruginosa porin OprF exists in two different conformations. Journal of Biological Chemistry, 281(24), 16220–16229. https://doi.org/10.1074/jbc.M600680200, PubMed: 16595653
Tannous, E., Lipman, S., Tonna, A., Hector, E., Hussein, Z., Stein, M. & Reisfeld, S. (2020). Time above the MIC of piperacillin-tazobactam as a predictor of outcome in Pseudomonas aeruginosa bacteremia. Antimicrobial Agents and Chemotherapy, 64(8), e02571-19. https://doi.org/10.1128/AAC.02571-19, PubMed: 32482679
Vitkauskienė, A., Skrodenienė, E., Dambrauskienė, A., Macas, A. & Sakalauskas, R. (2010). Pseudomonas aeruginosa bacteremia: Resistance to antibiotics, risk factors, and patient mortality. Medicina, 46(7), 490–495. https://doi.org/10.3390/medicina46070071, PubMed: 20966623
Yoneyama, H., Ocaktan, A., Tsuda, M. & Nakae, T. (1997). The role ofmex-gene products in antibiotic extrusion in Pseudomonas aeruginosa. Biochemical and Biophysical Research Communications, 233(3), 611–618. https://doi.org/10.1006/bbrc.1997.6506
Zahra, T., Rezvan, M. & Ahmad, K. (2011). Detection and characterization of multidrug resistance and extended-spectrum-beta-lactamase-producing (ESBLS) Pseudomonas aeruginosa isolates in teaching hospital. African Journal of Microbiology Research, 5(20), 3223–3228. https://doi.org/10.5897/AJMR11.260
Zimmermann, W. I. (1980). Penetration of beta-lactam antibiotics into their target enzymes in Pseudomonas aeruginosa: Comparison of a highly sensitive mutant with its parent strain. Antimicrobial Agents and Chemotherapy, 18(1), 94–100. https://doi.org/10.1128/AAC.18.1.94, PubMed: 6774666
Section
Research Articles

How to Cite

Molecular investigation of Pseudomonas aeruginosa mexAB-oprM efflux pump genes from clinical samples and their correlation with antibiotic resistance. (2022). Journal of Applied and Natural Science, 14(1), 140-147. https://doi.org/10.31018/jans.v14i1.3240