##plugins.themes.bootstrap3.article.main##

Shreyansh Srivastava Ashok K. Chaubey

Abstract

National loss of Rs. 21,068.73 million has been estimated due to plant-parasitic nematodes in India. Among plant-parasitic nematodes, one of the major nematodes, root-knot nematodes (RKNs), are well-known diseases causing major losses in vegetable crops. An in vitro experiment was conducted to evaluate the nematicidal activities of the cell-free culture filtrate (CFCF) of entomopathogenic bacteria Photorhabdus spp. and Xenorhabdus spp. isolated from entomopathogenic nematodes Heterorhabditis indica (DH3) and Steinernema abbasi (CS-39), respectively. The applied doses were 90, 50, 25 and 10% CFCFs. The experiment was performed on the plant-parasitic nematode Meloidogyne incognita, and the % mortalities were determined at 6, 12, 24 and 48 hr intervals. The results of the present study revealed that 100% mortality was achieved after 48 hrs with a 10% filtrate of H. indica isolate DH3, while no significant result was achieved even after 48 hrs and at 90% CFCF of isolate CS39. Therefore, 10% CFCFs may be recommended for application in root-knot nematode-infected fields for the control.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Cell-free culture filtrate (CFCF), Meloidogyne incognita, Photorhabdus spp., Root-knot nematode, Xenorhabdus spp.

References
Abate, B. A., Wingfield, M. J., Slippers, B. & Hurley, B. P. (2017): Commercialisation of entomopathogenic nematodes: should import regulations be revised? Biocontrol Science & Technology, 27, 149-168.
Abd-Elgawad, M.M.M. (2017). Toxic secretions of Photorhabdus & their efficacy against crop insect pests. In Biocontrol Agents: Entomopathogenic & Slug Parasitic Nematodes; Abd-Elgawad, M.M.M., Askary, T.H., Coupland, J., Eds.; CAB International: Wallingford, UK. pp. 231–260.
Afzal, S., Tariq, S., Sultana, V., Ara, J. & Haque, S. E. (2013). Managing the root diseases of okra with endo-root plant growth promoting Pseudomonas & Trichoderma viride associated with healthy okra roots. Pak. J. Bot. 45(4), 1455-1460.1.
Ahuja, A., Kushwah, J., Mathur, C., Chauhan, K., Dutta, T.K. & Somvanshi, V.S. (2021). Identification of Galtox, a new protein toxin from Photorhabdus bacterial symbionts of Heterorhabditis. Toxicon, 194, 53–62. [CrossRef] [PubMed].
Akhurst, R. J. (1980). Morphological & functional dimorphism in Xenorhabdus spp., bacteria symbiotically associated with the insect pathogenic nematodes Neoaplectana & Heterorhabditis. Journal of general microbiology. 121, 303–309.
Ali, M. A., Azeem, F., Abbas, A., Joyia, F. A., Li, H., & Dababat, A. (2017). Transgenic strategies for enhancement of nematode resistance in plants. Front. Plant Sci. 8, 750. Doi: 10.3389/fpls.2017.00750.
Andaló, V., Rocha, F.S., Maximiniano, C., Jr, A.M. & Campos, V.P. (2012). In vivo & in vitro study of the effects of entomopathogenic bacteria & their filtrates on Meloidogyne incognita. International Research Journal of Microbiology, 3(1), 005-009.
Asghar, A., Mukhtar, T., Raja, M. U. & Gulzar, A. (2020). Interaction between Meloidogyne javanica & Ralstonia solanacearum in chili. Pakistan Journal of Zoology, 52, https://doi.org/10.17582/journal.pjz/2020.52.
Azeem, W., Mukhtar, T. & Hamid, T. (2020). Evaluation of Trichoderma harzianum & Azadirachta indica in the management of Meloidogyne incognita in Tomato. Pakistan Journal of Zoology, 52. https://doi.org/10.17582/journal.pjz/2020.52.
Bernard, G. C., Egnin, M., & Bonsi, C. (2017). The impact of plant-parasitic nematodes on agriculture and methods of control. Nematology-Concepts, Diagnosis and Control. DOI: 10.5772/intecooen68958.
Bhat, A.H., Istkhar, Chaubey, A. K., Půža, V. & San-Blas, E. (2017). First report & comparative study of Steinernema surkhetense (Rhabditida: Steinernematidae) & its symbiont bacteria from subcontinental India. J Nematol 49, 92–102.
Brachmann, A. O. & Bode, H. B. (2013). Identification & bioanalysis of natural products from insect symbionts & pathogens. Adv. Biochem. Eng. Biotechnol. 135, 123–155. doi: 10.1007/10_2013_192
Chitwood, B. G. (1949). “Root-Knot Nematodes”-Part I. A Revision of the Genus Meloidogyne goeldi, 1887. Proceedings of the Helminthological Society of Washington, 16: 90-104.
Cowles, K. N., Cowles, C. E., Richards, G. R., Martens, E. C., & Goodrich-Blair, H. (2007). The global regulator Lrp contributes to mutualism, pathogenesis & phenotypic variation in the bacterium Xenorhabdus nematophila. Cell. Microbiol. 9, 1311–1323. doi: 10.1111/j.1462-5822.20 06.00873.x
Da Silva, W.J., Pilz-Júnior, H.L., Heermann, R. et al. (2020). The great potential of entomopathogenic bacteria Xenorhabdus & Photorhabdus for mosquito control: A review. Parasites Vectors 2020, 13, 376. https://doi.org/10.1186/s13071-020-04236-6
Das, D, Kshetrimayum, S., Devi, S. & Rai, D. (2015). A taxonomic review of Root Nematode. International journal of current research, 7(12), 23413-23416. Retrieved from https://www.journalcra.com/sites/default/files/issue-pdf/11112.pdf
Davari, A. & Parker, B. L. (2018): A review of research on Sunn Pest {Eurygaster integriceps Puton (Hemiptera: Scutelleridae)} management published 2004–2016. – Journal of Asia-Pacific Entomology, 21, 352-360.
David, H. & Kurup, N.K. (1988). Techniques for mass production of Sturmiopsis inferens Tns. In: Biocontrol Technology for Sugarcane Pest Management (David H & Easwaramoorthy S eds.). Sugarcane Breeding Institute, Coimbatore. Pp. 87-92.
Dunphy, G. & Thurston, G. (1990). Insect immunity. In Entomopathogenic Nematodes in Biological Control; Gaugler, R., Kaya, H.K., Eds.; CRC Press: Boca Raton, FL, USA, pp. 301–326.
Eleftherianos, I., Yadav, S., Kenney, E., Cooper, D., Ozakman, Y. & Patrnogic, J. (2018). Role of Endosymbionts in Insect-Parasitic Nematode Interactions. Trends Parasitol. 34, 430–444. [CrossRef] [PubMed]
Engel, Y., Windhorst, C., Lu, X., Goodrich-Blair, H., & Bode, H. B. (2017). The global regulators Lrp, Leu O. & HexA control secondary metabolism in entomopathogenic bacteria. Front. Microbiol. 8, 209. doi: 10.3389/fmicb.2017. 00209
Eroglu, C., Cimenb, H., Ulug, D., Karagoz, M., Hazir, S. & Cakmaka, I. (2019). Acaricidal effect of cell-free supernatants from Xenorhabdus & Photorhabdus bacteria against Tetranychus urticae (Acari: Tetranychidae). J. Inver. Pathol., 106, 61–66. [CrossRef].
Fallon, D.J., Kaya, H.K., Gaugler, R. & Sipes, B.S. (2004). Effect of Steinernema feltiae-Xenorhabdus bovienii insect pathogen complex on Meloidogyne javanica. Nematol. 6, 671-680.
Ffrench-Constant, R., Waterfield, N. & Daborn, P. (2019). Insecticidal toxins from Photorhabdus & Xenorhabdus. In Encyclopedia of Microbiology, 4th ed.; Schmid, T.M., Ed.; Academic Press: New York, NY, USA, pp. 704–715. [CrossRef].
Food & Agriculture Organization (2019). International Year of Plant Health, 2020: Communication Guide. Rome: International Year of Plant Health: Communication Guide (fao.org).
Gomez, K. A. & Gomez, A.A. (1984). Statistical Procedures for Agricultural Research. 2nd Ed., John Wiley & Sons. Inc. New York.
Gowda, M. T., Rai, A.B., Singh, A. (2017). Root Knot Nematode: A Threat to Vegetable Production & its Management, Technical Bulletin No. 76, ICAR - Indian Institute of Vegetable Research.
Helms, A. M., Ray, S., Matulis, N. L., Kuzemchak, M. C., Grisales, W., Tooker, J. F., et al. (2019). Chemical cues linked to risk: Cues from below-ground natural enemies enhance plant defences & influence herbivore behaviour & performance. Funct. Ecol. doi: 10.1111/1365-2435.13297
Hinchliffe, S.J., Hares, M., Dowling, A. & ffrench-Constant, R. (2010). Insecticidal toxins from the Photorhabdus & Xenorhabdus bacteria. Open Toxinol J 3, 83–100
Hu, K., Li, J. & Webster, J. M. (1999). Nematicidal metabolites produced by Photorhabdus luminescens (Enterobacteriaceae), bacterial symbiont of entomopathogenic nematodes. Nematology, 1:457–69.
Hussa, E. A., Casanova-Torres, Á.M. & Goodrich-Blair, H. (2015). The global transcription factor Lrp controls virulence modulation in Xenorhabdus nematophila. J. Bacteriol. 197, 3015–3025. doi: 10.1128/JB.00272-15
Jones, M. G. K., & Payne, H. L. (1978). Early stage of nematode-induced giant-cell formation in roots of Impatiens balsamina. J. Nematol. 10, 70–84.
Kajla, M.K., Barrett-Wilt, G.A., Paskewitz, S. (2019). Bacteria: a novel source for potent mosquito feeding-deterrents. Sci Adv 5(1):eaau6141.
Kajol, Bhat, A. H., Aasha & Chaubey, A. K. (2020). Biochemical and molecular characterization of Photorhabdus akhurstii associated with Heterorhabditis indica from Meerut, India. Pakistan Journal of Nematology, 38(1): 15-24 ISSN 0255-7576 ISSN 2313-1942, http://dx.doi.org/10.18681/pjn.v38.i01.p15-24.
Kaya, H.K. & Gaugler, R. (1993). Entomopathogenic nematodes. Annu. Rev. Entomol., 38, 181-206.
Khan, M. T. A., Mukhtar, T. & Saeed, M. (2019). Resistance or susceptibility of eight aubergine cultivars to Meloidogyne javanica. Pakistan Journal of Zoology, 51, 2187-2192.
Khanal, C., Robbins, R. T., Faske, T. R., Szalanski, A. L., McGawley, E. C., & Overstreet, C. (2016). Identification & haplotype designation of Meloidogyne spp. of Arkansas using molecular diagnostics. https://journals.flvc.org/nematropica/article/view/90804
Kofoid, C. A., & White, W. A. (1919). A nematode infection of man. Journal of American Medicine Association. 72, 567–569.
Kofoid, C. A., & White, W. A. (1919). A nematode infection of man. Journal of American Medicine Association, 72, 567–569.
Kumari, P., Mahapatro, G.K., Banerjee, N. & Sarin, N.B. (2015). Ectopic expression of GroEL from Xenorhabdus nematophila in tomato enhances resistance against Helicoverpa armigera & salt & thermal stress. Transgenic Res 24(5):859–873
Lewis, E. E. & Clarke, D. J. (2012). “Nematode parasites & entomopathogens,” in Insect Pathology, eds E. F. Vega & H. K. Kaya (Amsterdam: Elsevier), 395–424. doi: 10.1016/B978-0-12-384984-7.00011-7
Mc Beth, C.W., Taylor, A.L. & Smith, A.L. (1941). Note on staining nematodes in root tissues. Proceeding of Helminthological Society of Washington. 8: 26.
Migunova, V.D. & Sasanelli, N. (2021). Bacteria as biocontrol tool against phytoparasitic nematodes. Plants, 10, 389. [CrossRef] [PubMed]
Muangpat, P., Suwannaroj, M., Yimthin, T., Fukruksa, C., Sitthisak, S., Chantratita, N., Vitta, A. & Thanwisai, A. (2020). Antibacterial activity of Xenorhabdus & Photorhabdus isolated from entomopathogenic nematodes against antibiotic-resistant bacteria. PLoS ONE, 15, e0234129. [CrossRef].
Mukhtar, T. & Hussain, M. A. (2019). Pathogenic potential of Javanese root-knot nematode on susceptible & resistant okra cultivars. Pakistan Journal of Zoology, 51, 5, 1891-1897. https://doi.org/10.17582/journal.pjz/2019.51.5.1891.1897
Murfin, Kristen, E., Adler, R., Dillman, Jeremy, M., Foster, Silvia, B., Barton, E., Slatko, Paul, W., Sternberg & Heidi goodrich-blair (2012). Nematode-Bacterium Symbioses—Cooperation & Conflict Revealed in the “Omics” Age, © 2012 Marine Biological Laboratory Biol. Bull., 223, 85–102.
Nollmann, F. I., Heinrich, A. K., Brachmann, A. O., Morisseau, C., Mukherjee, K., Casanova-Torres, Á.M….et al. (2015). A Photorhabdus natural product inhibits insect juvenile hormone epoxide hydrolase. Chembiochem, 16, 766–771. doi: 10.1002/cbic.201402650
Orozco, R. A., Molnar, I., Bode, H. & Stock, S. P. (2016). Bioprospecting for secondary metabolites in the entomopathogenic bacterium Photorhabdus luminescens subsp. sonorensis. Journal of Invertebrate Pathology, 141, 45–52.
Osimani, A., Milanović, V., Cardinali, F., Roncolini, A., Garofalo, C., Clementi, F., Pasquini, M., Mozzon, M., Foligni, R., Raffaelli, N., Zamporlini, F. & Aquilanti, L., (2018). Bread enriched with cricket powder (Acheta domesticus): a technological, microbiological and nutritional evaluation. Innovative Food Science & Emerging Technologies, 48, 150-163.
Ralmi, N. H. A. A., Khandaker, M. M. & Mat, N. (2016). Occurrence & control of root knot nematode in crops: a review. Australian Journal of Crop Science, 11(12),1649.https://search.informit.com.au/documentSummary;dn=581347147481437;res.IELHS S
Samaliev, H.Y., Andreoglou, F. I., Elawad, S.A., Hague, N.G.M. & Gowen, S.R. (2000). The nematicidal effects of the Pseudomonas oryzihabitans & Xenorhabdus nematophilus on the root-knot nematode Meloidogyne javanica. Nematol. 2: 507–514.
Shapiro-Ilan, D. I., Hiltpold, I., & Lewis, E. E. (2018). “Ecology of invertebrate pathogens: nematodes,” in Ecology of Invertebrate Diseases, ed A. E. Hajek & D. I. Shapiro-Ilan (Hoboken, NJ: John Wiley & Sons, Ltd.), 415–440. doi: 10.1002/9781119256106.ch11
Shapiro-Ilan, D., Arthurs, S. P. & Lacey, L. A. (2017). “Microbial control of arthropod pests of orchards in temperate climates,” in Microbial Control of Insect & Mite Pests, ed L. A. Lacey (Amsterdam: Elsevier), 253–267. doi: 10.1016/B978-0-12-803527-6.00017-2
Sikandar, A., Zhang, M., Wang, Y., Zhu, X., Liu, X., Fan, H., Xuan, Y., Chen, L. & Duan, Y. (2020a). In vitro evaluation of Penicillium chrysogenum Snef1216 against Meloidogyne incognita (root-knot nematode). – Scientific Reports 10: 8342.
Stock, P. (2015). Diversity, biology & evolutionary relationship. In: Campos-Herrera, R. (Ed.), Nematode Pathogenesis of Insects & Other Pests. Springer International Publishing AG Switzerland, Switzerland, pp. 531.
Stock, S.P., Kusakabe, A. & Orozco, R. A. (2017). Secondary metabolites produced by Heterorhabditis symbionts & their application in agriculture: what we know & what to do next. J Nematol 49(4):373– 383
Tariq-Khan, M., Munir, A., Mukhtar, T., Hallmann, J. & Heuer, H. (2017). Distribution of root-knot nematode species and their virulence on vegetables in northern temperate agro-ecosystems of the Pakistani administered territories of Azad Jammu and Kashmir. Journal of Plant Diseases and Protection, 124(3), 201–212.
Taylor, A.L., Propkin, V.A. & Martin, G.C. (1955). Perineal patterns of root-knot nematodes. Phytopathol. 45(1): 26-34.
Taylor, P.P. & Netscher, C. (1974). An improved technique for preparing perineal pattern of Meloidogyne spp. Nematologica. 20(2): 258-263.
Tobias, N. J., Shi, Y. M. & Bode, H. B. (2018).Refining the natural product repertoire in entomopathogenic bacteria. Trends Microbiol 26(10):833– 840.
Trdan, S., Laznik, Ž. & Bohinc, T. (2020): Thirty Years of Research & Professional Work in the Field of Biological Control (Predators, Parasitoids, Entomopathogenic & Parasitic Nematodes) in Slovenia: A Review. – Applied Sciences, 10: 7468.
White, G. (1927). A method for obtaining infective nematode larvae from culture. Science. 66:302–303.
Xue, Y., Wang, M., Zhao, P., Quan, C., Li, X., Wang, L., Gao, W., Li, J., Zu, X., Fu, D., Feng, S. & Li, P. (2018). Gram-negative bacilli-derived peptide antibiotics developed since 2000. Biotechnol Lett 40(9–10):1271–1287
Yooyangket, T., Muangpat, P., Polseela, R., Tandhavanant, S., Thanwisai, A. & Vitta, A. (2018). Identification of entomopathogenic nematodes & symbiotic bacteria from Nam Nao National Park in Thailand & larvicidal activity of symbiotic bacteria against Aedes aegypti & Aedes albopictus. PLoS One 13(4):e0195681.
Zhang, H., Mao, J., Liu, F. & Zeng, F. (2012). Expression of a nematode symbiotic bacterium-derived protease inhibitor protein in tobacco enhanced tolerance against Myzus persicae. Plant Cell Rep 31(11): 1981–1989
Citation Format
How to Cite
Srivastava, S. ., & Chaubey, A. K. . (2022). In vitro study on the nematicidal activity of entomopathogenic bacteria against the root knot nematode Meloidogyne incognita. Journal of Applied and Natural Science, 14(1), 1–8. https://doi.org/10.31018/jans.v14i1.3181
More Citation Formats:
Section
Research Articles