Article Main

N. Gayathri A. Ram Sailesh N. Srinivas

Abstract

Lithium is one of the trace elements essential for the human body. The use of Li-based products has increased tremendously, leading to higher consumption patterns and the generation of lithum-based wastes. A higher concentration of lithium leads to the contamination of soil and water bodies. Lithium enters the food chain through the plant pathway. The food chain becomes contaminated with agricultural products produced on lithium-contaminated soil. Owing to this scenario, the present study is focused on studying the effect of lithium on the germination and growth of Amaranthus viridis. Germination studies were conducted in petri dishes, and the rate germination was 95% at control and 10 ppm. At higher concentrations, the rate of germination was 73% at 50 ppm, 57% at 75 ppm and 41% at 100 ppm. Pot experiments were conducted for 51 days using lithium-amended soil from 10 to 100 ppm. Pot experiments revealed that, at higher concentrations, lithium promoted the length and weight of the plant from 1.122 g/plant in the control to 2.415 g/plant at 100 ppm. The stress tolerance index was calculated for the length and dry weight of the roots and shoots, respectively. High stress tolerance at root and shoot biomass led to an increase in the biomass of the plant, which promoted the accumulation of lithium in plant parts. These results concluded that lithium stimulated plant growth at lower concentrations and increased biomass at higher concentrations, which was confirmed through the calculation of the stress tolerance index.


 

Article Details

Article Details

Keywords

Amaranthus viridis, Lithium, Metabolism, Pot experiments, Stress tolerance index

References
Amin, H., Arain, B. A., Amin, F. & Surhio, M. A. (2014). Analysis of the growth response and tolerance index of Glycine max (L.) Merr. Under hexavalent chromium stress. Advancements in Life Sciences, 1(4), 231-241.
Ammari, T. G., Al-Zu’bi, Y., Abu-Baker, S., Dababneh, B., Gnemat, W. & Tahboub, A. (2011). The occurrence of lithium in the environment of the Jordan Valley and its transfer into the food chain. Environmental Geochemistry and Health, 33(5), 427-437.
Anjum, T., Bajwa, R. & Javaid, A. (2005). Biological Control of Parthenium I: Effect of Imperata cylindrica on distribution, germination and seedling growth of Parthenium hysterophorus L. Int. J. Agric. Biol, 7(3), 448-450.
Antonkiewicz, J., Jasiewicz, C., Koncewicz-Baran, M. & Bączek-Kwinta, R. (2017). Determination of lithium bioretention by maize under hydroponic conditions. Archives of Environmental Protection, 43 (4), 94-104. DOI 10.1515/aep-2017-0036
Bolan, N., Hoang, S.A., Tanveer, M., Wang, L., Bolan, S., Sooriyakumar, P., Robinson, B., Wijesekara, H., Wijesooriya, M., Keerthanan, S. & Vithanage, M. (2021). From mine to mind and mobile–lithium contamination and its risk management. Environmental Pollution, 290, p.118067. https://doi.org/10.1016/j.envpol.2021.118067
Chen, L., Guo, X., Lu, W., Chen, M., Li, Q., Xue, H. & Pang, H. (2018). Manganese monoxide-based materials for advanced batteries. Coordination Chemistry Reviews, 368, 13-34.
Elektorowicz, M. & Keropian, Z. (2015). Lithium, vanadium and chromium uptake ability of Brassica juncea from lithium mine tailings. International journal of phytoremediation, 17(6), 521-528.
Gardea-Torresdey J, Peralta-Videa J, Montes M, De la Rosa G. & Corral-Diaz B. (2004).Bioaccumulation of cadmium, chromium and copper by Convolvulus arvensis L.: impact on plant growth and uptake ofnutritional elements. Bioresource Technology,92(3), 229-235.
Goldstein, M.R. & Mascitelli, L., (2016). Is violence in part a lithium deficiency state?. Medical hypotheses, 89, 40-42
Hawrylak-Nowak, B., Kalinowska, M. & Szymańska, M. (2012). A study on selected physiological parameters of plants grown under lithium supplementation. Biological Trace Element Research, 149(3), 425-430.
Henschel, J., Mense, M., Harte, P., Diehl, M., Buchmann, J., Kux, F., Schlatt, L., Karst, U., Hensel, A., Winter, M. & Nowak, S.(2020). Phytoremediation of Soil Contaminated with Lithium Ion Battery Active Materials—A Proof-of-Concept Study. Recycling, 5(4), 26.
Jaleel, C. A., Changxing, Z., Jayakumar, K. & Iqbal, M. (2009). Low concentration of cobalt increases growth, biochemical constituents, mineral status and yield in Zea mays. Journal of Scientific Research, 1(1), 128-137.
Jin, Y. H., Kim, B. R. & Kim, D. W. (2021). Correlation between lithium concentration and ecotoxicoloigy in Lithium contained waste water. Clean Technology, 27(1), 33-38.)
Jurkowska, H., Rogóż, A. & Wojciechowicz, T. (1998). Comparison of lithium toxic influence on some cultivars of oats, maize and spinach. Acta Agraria et Silvestria/Agraria, 36, 37-42
Kabata-Pendias, A. & Mukherjee, A. B. (2007). Trace elements from soil to human. Springer Science & Business Media
Kalinowska, M., Hawrylak-Nowak, B. & Szymańska, M. (2013). The influence of two lithium forms on the growth, L-ascorbic acid content and lithium accumulation in lettuce plants. Biological trace element research, 152(2), 251-257.
Kashin, V. K. (2019). Lithium in soils and plants of Western Transbaikalia. Eurasian Soil Science, 52(4), 359-369.
Kavanagh, L., Keohane, J., Cabellos, G.G., Lloyd, A. and Cleary, J., 2018. Induced plant accumulation of lithium. Geosciences, 8(2), p.56.
Kousa, A., S. Mattila & M. Nikkarinen. 2013. High tech-metals in the environment and health. Lithium and cobalt. Geologian Tutkimuskeskus 53:2–14. 
Lai, H. Y., Chen, S. W. & Chen, Z. S. (2008). Pot experiment to study the uptake of Cd and Pb by three Indian mustards (Brassica juncea) grown in artificially contaminated soils. International Journal of Phytoremediation, 10 (2), 91-105.
Li, X., Gao, P., Gjetvaj, B., Westcott, N. & Gruber, M. Y. (2009). Analysis of the metabolome and transcriptome of Brassica carinata seedlings after lithium chloride exposure. Plant Science, 177(1), 68-80.
Liaugaudaite, V., Mickuviene, N., Raskauskiene, N., Naginiene, R. & Sher, L., 2017. Lithium levels in the public drinking water supply and risk of suicide: a pilot study. Journal of Trace Elements in Medicine and Biology, 43, 197-201.
Makus, D. J., & Zibilske, L. (2009). Spinach and mustard greens response to soil texture, sulfur addition and lithium level. Subtropical Plant science, 60, 69-77.
Maric, M., Antonijevic, M. & Alagic, S. (2013). The investigation of the possibility for using some wild and cultivated plants as hyperaccumulators of heavy metals from contaminated soil. Environmental Science and Pollution research, 20(2), 1181-1188.
Mulkey, T. J. (2007). Alteration of growth and gravitropic response of maize roots by lithium. Gravitational and Space Research, 18(2).
Naranjo, M. A., Romero, C., Bellés, J. M., Montesinos, C., Vicente, O. & Serrano, R. (2003). Lithium treatment induces a hypersensitive-like response in tobacco. Planta, 217(3), 417-424.
Ribeiro, E. A., da Silva, L. P., Silva, J. H., da Luz, H. P. D. O., Nunes, B. H. D. N., de Faria, A. J. G. & Ribeiro, R. (2019). Germination of Soybean Seeds treated with Sources and doses of Lithium for Agronomic Biofortification. International Journal of Advanced Engineering Research and Science, 6(7), 670-674.
Schwertfeger, D. M. & Hendershot, W. H. (2013). Spike/leach procedure to prepare soil samples for trace metal ecotoxicity testing: Method development using copper. Communications in soil science and plant analysis, 44(10), 1570-1587.
Seneviratne, M., Rajakaruna, N., Rizwan, M., Madawala, H. M. S. P., Ok, Y. S., & Vithanage, M. (2019). Heavy metal-induced oxidative stress on seed germination and seedling development: a critical review. Environmental Geochemistry and Health, 41(4), 1813-1831.
Shahzad, B., Tanveer, M., Hassan, W., Shah, A. N., Anjum, S. A., Cheema, S. A. & Ali, I. (2016). Lithium toxicity in plants: Reasons, mechanisms and remediation possibilities–A review. Plant Physiology and Biochemistry, 107, 104-115
Sobolev, O. I., Gutyj, B. V., Darmohray, L. M., Sobolievа, S. V., Ivanina, V. V., Kuzmenko, O. A, Karkach, P.M., Fesenko, V.F., Bilkevych, V.V., Mashkin, Y.O. and Trofymchuk, A.M. & Chernyuk, S. V. (2019). Lithium in the natural environment and its migration in the trophic chain. Ukrainian Journal of Ecology, 9(2), 195-203.
Tkatcheva, V., Poirier, D., Chong-Kit, R., Furdui, V. I., Burr, C., Leger, R. & Simmons, D. B. (2015). Lithium an emerging contaminant: bioavailability, effects on protein expression, and homeostasis disruption in short-term exposure of rainbow trout. Aquatic Toxicology, 161, 85-93.
Vamerali, T., Bandiera, M., Lucchini, P. & Mosca, G. (2015). Metal partitioning in plant–substrate–water compartments under EDDS-assisted phytoextraction of pyrite waste with Brassica carinata A. Braun. Environmental Science and Pollution Research, 22(4), 2434 – 2446.
Voica, C., Roba, C. & Iordache, A.M. (2021). Lithium Levels in Food from the Romanian Market by Inductively Coupled Plasma–Mass Spectrometry (ICP–MS): A Pilot Study. Analytical Letters, 54(1-2), 242-254
Wuana, R. A., Okieimen, F. E. & Imborvungu, J. A. (2010). Removal of heavy metals from a contaminated soil using organic chelating acids. International Journal of Environmental Science & Technology, 7(3), 485-496.
Zheng, S., Li, X., Yan, B., Hu, Q., Xu, Y., Xiao, X. et al. (2017). Transition-metal (Fe, Co, Ni) based metal-organic frameworks for electrochemical energy storage. Adv. Energy Mater., 7,1602733. https://doi.org/10.1002/aenm.2016 02733
Section
Research Articles

How to Cite

Effect of lithium on seed germination and plant growth of Amaranthus viridis. (2022). Journal of Applied and Natural Science, 14(1), 133-139. https://doi.org/10.31018/jans.v14i1.3165