Prakash Yadav Adarsh Kumar Shukla Tejpal Dhewa Ashwani Kumar


Pearl millet-based food products can be used for weight control and minimize the possibility of chronic diseases. They have protein, minerals, fat, phenolic compounds, and a diminutive glycemic index. Moreover, Probiotic fermentation can bring specific additional benefits in addition to nutritional improvements. In silico analysis of the chemical-protein interaction of tannic acid and ascorbic acid of pearl millet was undertaken. Further, the role of fortification of rabadi beverage by probiotic culture was also assessed in this study at different temperatures (35, 42, and 45°C) of fermentation. In silico study has predicted the association of both tannic acid and ascorbic acid with the various human proteins responsible for the growth and development of the human immune system. In all used probiotic (Lactobacillus rhamnosus, Lactobacillus sp. and  Streptococcus faecalis), L. rhamnosus fortified rabadi beverage at continuous increasing temperature (35, 42, 45 °C) of non-autoclaved batch showed high content of TAC (36.83 ± 5.41 µg mL-1), TPC (46.1 ± 8.28 µg mL-1) and TFC (29.91 ± 7.73 µg mL-1); while decrease in tannins content (14.84 ± 4.64 µg mL-1) as compared to control [TAC (29.32 ± 3.17 µg mL-1), TPC (25.53 ± 5.75 µg mL-1), TFC (21.91 ± 5.95 µg mL-1), and Tannins (20.74 ± 3.43 µg mL-1)].  L. rhamnosus fortified rabadi beverage of non-autoclaved batch showed better results than Lactobacillus sp. and  S. faecalis fortified rabadi beverage of both batches (autoclaved and non-autoclaved); which in turn expressed the enhanced therapeutic activity of probiotic fortified rabadi beverage.


Download data is not yet available.


Metrics Loading ...




Antioxidant profiling, In-silico, Pearl millet, Probiotic fermentation, Total antioxidant capacity

Agrawal, H., Joshi, R. & Gupta, M. (2016). Isolation, purification and characterization of antioxidative peptide of pearl millet (Pennisetum glaucum) protein hydrolysate. Food Chem, 204,365–372. https://doi.org/10.1016/j.foodchem.2016.02.127.
Agboola, S. A. & Ojo, O. C. (2018). Effect of Lactobacillus Species and Saccharomyces cerevisiae on the mineral and anti-nutrient composition of Kunu–A fermented millet based food. Asian Food Science Journal, 1-8. https://doi.org/10.9734/AFSJ/2018/44023.
Akinola, S. A., Badejo, A. A., Osundahunsi, O. F. & Edema, M. O. (2017). Effect of pre-processing techniques on pearl millet flour and changes in technological properties. Int. J. Food Sci. Technol., 52,992–999. doi:10.1111/ijfs.13363.
Alard, J., Peucelle, V., Boutillier, D., Breton, J., Kuylle, S., Pot, B., Holowacz, S. & Grangette, C. (2018). New probiotic strains for inflammatory bowel disease management identified by combining in vitro and in vivo approaches. Beneficial Microbes, 9(2),317-331. https://doi.org/10.3920/BM20 17.0 097.
Aryal, S., Baniya, M. K., Danekhu, K., Kunwar, P., Gurung, R., & Koirala, N. (2019). Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from Western Nepal. Plants, 8(4),96. doi:10.3390/plants8040096.
Banwo, K., Asogwa, F. C., Ogunremi, O. R., Adesulu-Dahunsi, A., & Sanni, A. (2021a). Nutritional profile and antioxidant capacities of fermented millet and sorghum gruels using lactic acid bacteria and yeasts. Food Biotechnology, 35(3), 199-220. https://doi.org/10.1080/0890 5436.2021.1940197.
Banwo, K., Fasuyi, T. O., & Olojede, A. O. (2021b). Potentials of Lactobacillus plantarum and Pichia kudriavzevii in co-fermentation of sourdough from millet. International Journal of Food Science & Technology, 56(2),857-864. doi:10.1111/ijfs.14729.
Callcott, E. T., Santhakumar, A. B., Luo, J., & Blanchard, C. L. (2018). Therapeutic potential of rice-derived polyphenols on obesity-related oxidative stress and inflammation. Journal of Applied Biomedicine, 16(4),255-262. https://doi.org/10.1016/j.jab.2018.03.001.
Chandrasekara, A., & Shahidi, F. (2012). Bioaccessibility and antioxidant potential of millet grain phenolics as affected by simulated in vitro digestion and microbial fermentation. Journal of Functional Foods, 4(1),226-237. doi:10.1016/j.jff.2011.11.001.
Chang, C. C., Yang, M. H., Wen, H. M., & Chern, J. C. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of food and drug analysis, 10(3). https://doi.org/10.38212/2224-6614.2748.
Cuevas, A., Saavedra, N., Salazar, L. A., & Abdalla, D. S. (2013). Modulation of immune function by polyphenols: possible contribution of epigenetic factors. Nutrients, 5(7),2314-2332. https://doi.org/10.3390/nu5072314.
Dhankher, N., & Chauhan, B. M. (1987). Effect of temperature and fermentation time on phytic acid and polyphenol content of rabadi—a fermented pearl millet food. Journal of Food Science, 52(3),828-829. https://doi.org/10.1111/j.1365-2621.1987.tb06739.x
Dlamini, N. R., Taylor, J. R., & Rooney, L. W. (2007). The effect of sorghum type and processing on the antioxidant properties of African sorghum-based foods. Food Chemistry, 105(4), 1412-1419. https://doi.org/10.1016/j.foodch em.2007.05.017.
Falcinelli, B., Calzuola, I., Gigliarelli, L., Torricelli, R., Polegri, L., Vizioli, V., Benincasa, P. & Marsili, V. (2018). Phenolic content and antioxidant activity of wholegrain breads from modern and old wheat (Triticum aestivum L.) cultivars and ancestors enriched with wheat sprout powder. Italian Journal of Agronomy, 13(4),297-302. https://doi. org/10.4081/ija.2018.1220.
Hager, C. L., & Ghannoum, M. A. (2017). The mycobiome: role in health and disease, and as a potential probiotic target in gastrointestinal disease. Digestive and Liver Disease, 49(11),1171-1176. https://doi.org/10.1016/j.dld.201 7.08.025.
Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B. and Sanders, M. E. (2014). Expert consensus document. The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology and Hepatology, 11,506–514. http://www.nature.com/doifinder/10.1038/nrgastro.20 14.66.
Howell, D. C. (2012). Statistical methods for psychology. Cengage Learning.
Kerman, D. H., & Deshpande, A. R. (2014). Gut microbiota and inflammatory bowel disease: The role of antibiotics in disease management. Postgraduate Medicine, 126,7–9. https://doi.org/10.3810/pgm.2014.07.2779.
Krishnan, R. and Meera, M.S. (2018). Pearl millet minerals: effect of processing on bioaccessibility. J Food Sci Technol, 55,3362–3372. https://doi.org/10.1007/s13197-018-3305-9.
Liu, S., You, L., Zhao, Y., & Chang, X. (2018). Wild lonicera caerulea berry polyphenol extract reduces cholesterol accumulation and enhances antioxidant capacity in vitro and in vivo. Food Research International, 107,73–83. https://doi.org/10.1016/j.foodres.2018.02.016.
Longvah, T., Ananthan, R., Bhaskarachary, K. & Venkaiah, K. (2017). Indian Food Composition Tables. National Institute of Nutrition (ICMR), Department of Health Research, ministry of health & Family Welfare, Government of India, Hyderabad, Telangana State, INDIA..
Menezes, A. G. T., Ramos, C. L., Dias, D. R. & Schwan, R. F. (2018). Combination of probiotic yeast and lactic acid bacteria as starter culture to produce maize-based beverages. Food Res. Int, 111,187–197. doi:10.1016/j.foodres.2018.04.065.
Nambiar, V. S., Dhaduk, J. J., Sareen, N., Shahu, T., & Desai, R. (2011). Potential functional implications of pearl millet (Pennisetum glaucum) in health disease. Journal of Applied Pharmaceutical Science, 1(10), 62-67.
Ng, K. R., Lyu, X., Mark, R. & Chen, W. N. (2019). Antimicrobial and antioxidant activities of phenolic metabolites from flavonoid-producing yeast: potential as natural food preservatives. Food Chemistry, 270,123–129. https://doi.org/10.1016/j.foodchem.2018.07.077.
Noratto, G., Porter, W., Byrne, D. & Cisneros-Zevallos, L. (2009). Identifying peach and plum polyphenols with chemopreventive potential against estrogen-independent breast cancer cells. Journal of Agricultural and Food Chemistry, 57(2),5119–5126. https://doi.org/10.1021/jf900 259m.
Nwinuka, N.M., Ibeh, G.O. & Ekeke, G.I. (2005). Proximate composition and levels of some toxicants in four commonly consumed spices. J. Appl. Sci. Environ. Manag, 9, 150–155. http://hdl.handle.net/1807/6437.
Obadina, A. O., Arogbokun, C. A., Soares, A. O., Cwp, D. C., Barboza, H. T. & Adekoya. I. O. (2017). Changes in nutritional and physico-chemical properties of pearl millet (Pennisetum glaucum) ex-borno variety flour as a result of malting. J Food Sci Technol, 54:4442–4451. doi:10.1007/s13197-017-2922-z.
Ogodo, A., Agwaranze, D. I., Aliba, N. V., Kalu, A. C., & Nwaneri, C. B. (2018). Fermentation by lactic acid bacteria consortium and its effect on anti-nutritional factors in maize flour. Journal of Biological Science, 19(1),17–23. https://doi.org/10.3923/jbs.2019.17.23.
Ogunremi, O. R., Agrawal, R., & Sanni, A. I. (2015). Development of cereal‐based functional food using cereal‐mix substrate fermented with probiotic strain–Pichia kudriavzevii OG 32. Food science & nutrition, 3(6),486-494. https://doi.org/10.1002/fsn3.239.
Okoroafor, I., Banwo, K., Olanbiwoninu, A. & Odunfa, S. A. (2019). Folate enrichment of Ogi (a Fermented Cereal Gruel) using folate producing starter cultures. Adv. Microbiol, 9,177–193. doi:10.4236/aim.2019.93014.
Olojede, O. A., Sanni, A. I. & Banwo. K. (2020). Effect of legume addition on the physiochemical and organoleptic attributes of sorghum-based sourdough bread. LWT Food Sci. Technol., 118,108769. doi:10.1016/j.lwt.2019.108769.
Peˇsic, M. B., Milin ´ ci ˇ c, D.D. & Kosti ˇ c, A. Z. (2019). In vitro digestion of meat- and cereal-based food matrix enriched with grape extracts: how are polyphenol composition, bioaccessibility and antioxidant activity affected?,. Food Chemistry, 284, 28–44. https://doi.org/10.1016/j.foodchem.2019.01.107.
Prieto, P., Pineda, M. & Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem., 269,337-341. https://doi.org/10.1006/abio.199 9.40 19.
Qian, Z. J., Jung, W. K., Kang, K. H., Ryu, B., Kim, S. K. and Je, J. Y. (2012). In vitro antioxidant activities of the fermented marine microalga Pavlova lutheri (haptophyta) with the yeast Hansenula polymorpha. J. Phycol., 48,475– 482. doi:10.1111/j.1529-8817.2012.01117.
Rani, S., Singh, R. & Sehrawat, R. (2018). Pearl millet processing: a review. Nutr Food Sci, 48,30–44.
Reid, G. (2017). Probiotic use in an infectious disease setting. Expert Review of Anti-infective Therapy, 15, 449–455. https://doi.org/10.1080/14787210.2017.1300061.
Salar, R. K., Certik, M. & Brezova, V. (2012). Modulation of phenolic content and antioxidant activity of maize by solid state fermentation with Amnidium elegans CCF 1456. Biotechnology and Bioprocess Engineering, 17(1),109–116, 2012.
Sharma, A., & Kapoor. (1996). Effect of various types of fermentation on in vitro protein and starch digestibility of differently processed pearl millet. Food/Nahrung, 40(3), 142-145. https://doi.org/10.1002/food.19960400309.
Sidari, R., Martorana, A., Zappia, C., Mincione, A. & Giuffrè,A. M. (2020). Persistence and effect of a multistrain starter culture on antioxidant and rheological properties of novel wheat sourdoughs and bread. Foods, 9(9),1–24. https://doi.org/10.3390/foods9091258.
Singleton, V.L., & Rossi, J.A. (1965). Colorimetry of total phenolics with phosphomolybdicphospho-tungstic acid reagents. American Journal of Enology and Viticulture, 16,144-158.
Srivastava, U., Saini, P., Singh, A., Singh, Z., Ahmed, M. & Iqbal, U. (2021). Enhancement in iron and folate by optimizing fermentation of barnyard millet by Lactobacillus plantarum using response surface methodology (rsm). Plant Archives , 21(1), 993-1005.
Taylor, J. R. N., & Duodu, K. G. (2015). Effects of processing sorghum and millets on their phenolic phytochemicals and the implications of this to the health-enhancing properties of sorghum and millet food and beverage products. Journal of the Science of Food and Agriculture, 95,225–227. https://doi.org/10.1002/jsfa.6713.
Vitale, M., Vaccaro, O. & Masulli, M. (2017). Polyphenol intake and cardiovascular risk factors in a population with type 2 diabetes: the TOSCA.IT study. Clinical Nutrition, 36(6),1686–1692. https://doi.org/10.1016/j.clnu.2016.11.002.
Xiao, J., Kai, G., Yamamoto, K. & Chen, X. (2013). Advance in dietary polyphenols as α-glucosidases inhibitors: a review on structure-activity relationship aspect. Critical Reviews in Food Science and Nutrition, 53(8),818–836. https://doi.org/10.1080/10408398.2011.561379.
Yépez, A., Russo, P., Spano, G., Khomenko, I., Biasioli, F., Capozzi, V. & Aznar, R. (2019). In situ riboflavin fortification of different kefir-like cereal-based beverages using selected Andean LAB strains. Food Microbiol, 77,61–68. doi:10.1016/J.FM.2018.08.008.
Zuo, Y., Chen, H., & Deng, Y. (2002). Simultaneous determination of catechins, caffeine and gallic acids in green, Oolong, black and pu-erh teas using HPLC with a photodiode array detector. Journal of Talanta, 57,307–316. https://doi.org/10.1016/S0039-9140(02)00030-9.
Citation Format
How to Cite
Yadav, P. ., Shukla, A. K. ., Dhewa, T. ., & Kumar, A. (2021). In silico investigation of antioxidant interaction and effect of probiotic fermentation on antioxidant profiling of pearl millet-based rabadi beverage. Journal of Applied and Natural Science, 13(4), 1531–1544. https://doi.org/10.31018/jans.v13i4.3154
More Citation Formats:
Research Articles