Article Main

K. Manojkumar S. Vincent M. Raveendran R. Anandham V. Babu Rajendra Prasad A. Mothilal S. Anandakumar

Abstract

Drought is one of the major threats to groundnut productivity, causing a greater loss than any other abiotic factor. Water stress conditions alter plant photosynthetic activity, impacting future growth and assimilating mobilization towards sink tissues. The purpose of this study was to investigate how drought impacts the photosynthesis of plants and its links to drought tolerance. The influence of reproductive stage drought on photosynthetic activity and chlorophyll fluorescence of groundnut is well studied. The experiment was conducted in Kharif 2019 (Jul-Sep), where recent series in groundnut genotypes (60 nos) sown under rainfed conditions and water stress was created by withholding irrigation for 20 days between 35-55 days after sowing in the field to simulate drought conditions. Imposition of water deficit stress reduced PS II efficiency, which significantly altered the photosynthetic rate in the leaf. Observation of gas exchange parameters viz., photosynthetic rate, stomatal conductance and transpiration rate after 20 days of stress imposition revealed that of all 60 genotypes, 20 genotypes (VG 17008, VG 17046VG 18005, VG 18102, VG 18077, VG 19572, VG 19709, VG 18111, VG19561, VG19576, VG 19620, VG 19681, VG 19688, etc.,) had better Photosynthetic rate, Stomatal conductance. Similarly, PS II efficiency analyzed through fluorescence meter revealed that among the 60 and all the genotypes given above recorded higher value in Fv/Fm. Results obtained from Cluster analysis and PCA confirmed that photosynthetic rate and Fv/Fm is useful parameter in screening adapted cultivars under drought stress. These findings lay the groundwork for a future study to decipher the molecular pathways underpinning groundnut drought resistance.

Article Details

Article Details

Keywords

Chlorophyll fluorescence, Drought stress, Groundnut, Photosynthesis

References
Ahmed, S., Nawata, E., Hosokawa, M., Domae, Y. & Sakuratani, T. (2002). Alterations in photosynthesis and some antioxidant enzymatic activities of mungbean subjected to waterlogging. Plant Science, 163(1), 117-123. https://doi.org/10.1016/S0168-9452(02)00080-8
Ashraf, M., Nawazish, S., & Athar, H. U. R. (2007). Are chlorophyll fluorescence and photosynthetic capacity potential physiological determinants of drought tolerance in maize (Zea mays L.). Pakistan Journal of Botany, 39(4), 1123-1131.
Awal, M.A. and T. Ikeda. 2002. Recovery strategy following the imposition of episodic soil moisture deficit in stands of peanut (Arachis hypogea L.). Journal of Agronomy and Crop Science, 188: 185-192. https://doi.org/10.1046/j.1439-037X.2002.00558.x
Barnabás, B., Jäger, K. & Fehér, A. (2008). The effect of drought and heat stress on reproductive processes in cereals. Plant, cell & environment, 31(1), 11-38. https://doi.org/10.1111/j.1365-3040.2007.01727.x
Batra, N. G., Sharma, V., & Kumari, N. (2014). Drought-induced changes in chlorophyll fluorescence, photosynthetic pigments, and thylakoid membrane proteins of Vigna radiata.  Journal of Plant Interactions, 9(1), 712-721.https://doi.org/10.1080/17429145.2014.905801
Collins, C.N., Tardieu, F., Tuberosa, R. (2008). Quantitative trait loci and crop performance under abiotic stress: where do we stand? Plant Physiol. 147, 469–486.
Devi, M.J., Sinclair, T. R., Vadez, V. & Krishnamurthy, L. (2009). Peanut genotypic variation in transpiration efficiency and decreased transpiration during progressive soil drying. Field Crops Research, 114(2), 280-285.
Dias, M.C. & Brüggemann, W. (2010). Limitations of photosynthesis in Phaseolus vulgaris under drought stress: gas exchange, chlorophyll fluorescence and Calvin cycle enzymes. Photosynthetica, 48(1), 96-102. https://doi.org/10.1007/s11099-010-0013-8
Djanaguiraman, M., Annie Sheeba, J., Durga Devi, D. & Bangarusamy, U. (2009). Cotton leaf senescence can be delayed by nitrophenolate spray through enhanced antioxidant defence system. Journal of Agronomy and Crop Science, 195(3), 213-224. https://doi.org/10.1111/j.1439-037X.2009.00360.x
Dulai, S. (2006). Effects of drought on photosynthetic parameters and heat stability of PSII in wheat and in Aegilops species originating from dry habitats. Acta Biologica Szegediensis, 50(1-2), 11-17.
Galle, A., Florez-Sarasa, I., Tomas, M., Pou, A., Medrano, H., Ribas-Carbo, M. & Flexas, J. (2009). The role of mesophyll conductance during water stress and recovery in tobacco (Nicotiana sylvestris): acclimation or limitation?. Journal of Experimental Botany, 60(8), 2379-2390. https://doi.org/10.1093/jxb/erp071
Golabadi, M., Arzani, A.S. A. M., & Maibody, S.M. (2006). Assessment of drought tolerance in segregating populations in durum wheat. African Journal of agricultural research, 1(5), 162-171.
Heinemann, A.B., Ramirez-Villegas, J., Stone, L. F. & Didonet, A. D. (2017). Climate change determined drought stress profiles in rainfed common bean production systems in Brazil. Agricultural and forest Meteorology, 246,64-77. https://doi.org/10.1016/j.agrformet.2017.06.005
Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., Van Der Linden, P. J., Dai, X. & Johnson, C. A. (2001). The scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, (IPCC), Geneva. https://doi.org/1 0.1016/j.bbabio.2012.02.037
Huseynova, I. M. (2012). Photosynthetic characteristics and enzymatic antioxidant capacity of leaves from wheat cultivars exposed to drought. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1817(8),1516-152.
Kalariya, K. A., Singh, A.L., Chakraborty, K., Zala, P.V. & Patel, C.B. (2013). Photosynthetic characteristics of groundnut (Arachis hypogaea L.) under water deficit stress. Indian Journal of Plant Physiology, 18(2), 157-163.
Kauser, R., Athar, H. U.R. & Ashraf, M. U. H. A. M. M. A. D. (2006). Chlorophyll fluorescence: a potential indicator for rapid assessment of water stress tolerance in canola (Brassica napus L.). Pakistan Journal of Botany, 38(5 SPEC. ISS.), 1501-1509.
Khodarahmpour, Z., Choukan, R., Bihamta, M. R. & MAJIDI, H. E. (2011). Determination of the best heat stress tolerance indices in maize (Zea mays L.) inbred lines and hybrids under Khuzestan province conditions.
Lauriano, J. A., Lidon, F.C., Carvalho, C.A., Campos, P. S. & do Céu Matos, M. (2000). Drought effects on membrane lipids and photosynthetic activity in different peanut cultivars. Photosynthetica, 38(1), 7-12.
Lourtie, E., Bonnet, M., Bosschaert, L.(1995). New glyphosate screening technique by infrared thermometry. In: Fourth International Symposium on Adjuvants for Agrochemicals, Australia, pp. 297–302.
Maxwell, K. & Johnson, G. N. (2000). Chlorophyll fluorescence—a practical guide. Journal of Experimental Botany, 51(345), 659-668
Miller, G. A. D., Suzuki, N., Ciftci‐Yilmaz, S. U. L. T. A. N. & Mittler, R. O. N. (2010). Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, cell & environment, 33(4), 453-467. https://doi.org/10.1111/j.1365-3040.2009.02041.x
Minolta, C. (1989). Manual for Chlorophyll meter SPAD-502. Minolta Cameraco, Osaka, Japan.
Miyashita, K., S. Tanakamaru., T. Maitan and K. Kimura. (2005). Recovery responses of photosynthesis, transpiration and stomatal conductance in kidney bean following drought stress. Environ. Experimental Botany, 53(2), 205-214 https://doi.org/10.1016/j.envexpbot.2004.03.015
Mohammadi, M., Karimizadeh, R. & Abdipour, M. (2011). Evaluation of drought tolerance in bread wheat genotypes under dryland and supplemental irrigation conditions. Australian Journal of Crop Science, 5(4), 487-493.
Monje, O.A. and B. Bughree. 1992. Inherent limitation of non-destructive chlorophyll meters. A comparison of two types of meters. Horticulture Science, 27: 71-89. https://doi.org/10.21273/HORTSCI.27.1.69
Nazari, L., & Pakniyat, H. (2010). Assessment of drought tolerance in barley genotypes. J. Appl. Sci, 10(2), 151-156.
Nouri, A., Etminan, A., Teixeira da Silva, J. A. & Mohammadi, R. (2011). Assessment of yield, yield-related traits and drought tolerance of durum wheat genotypes (Triticum turjidum var. durum Desf.). Australian Journal of Crop Science, 5(1), 8-16.
Parameshwarappa, S. G., & Salimath, P. M. (2010). Field screening of chickpea genotypes for drought resistance. Karnataka Journal of Agricultural Sciences, 21(1).
Prasad, P.V.V., P.Q. Craufurd and R.J. Summerfield (1999). Fruit number in relation to pollen production and viability in groundnut exposed to short episodes of heat stress. Annual Botany, 84: 381-386. https://doi.org/10.1006/anbo.1999.0926
Reddy, T.Y., V.R. Reddy and V. Anbumozhi. 2003. Physiological responses of groundnut(Arachis hypogaea L.) to drought stress and its amelioration: A critical review. Plant Growth Regulations, 41: 75-88. https://doi.org/10.1556/AAgr.51.2003.2.9
Savage, G. P., & Keenan, J. I. (1994). In The groundnut crop: a scientific basis for improvement (ed): J. Smart.
Sita, K., Sehgal, A., Kumar, J., Kumar, S., Singh, S., Siddique, K. H. & Nayyar, H. (2017). Identification of high-temperature tolerant lentil (Lens culinaris Medik.) genotypes through leaf and pollen traits. Frontiers in Plant Science, 8, 744. https://doi.org/10.3389/fpls.2017.00744
Sun, J., Luo, H., Fu, J., & Huang, B. (2013). Classification of genetic variation for drought tolerance in Tall Fescue using physiological traits and molecular markers. Crop Science, 53(2), 647-654. https://doi.org/10.2135/cropsci2012.05.0315
Todaka, D., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2015). Recent advances in the dissection of drought-stress regulatory networks and strategies for development of drought-tolerant transgenic rice plants. Frontiers in Plant Science, 6, 84. https://doi.org/10.3389/fpls.2015.00084
Vurayai, R.V. Emongor and B. Moseki. (2010). Physiological Responses of Bambara Groundnut (Vigna subterranea L. Verdc) to Short Periods of Water Stress During Different Developmental Stages. Asian Journal of Agricultural Sciences, 3(1): 37-43
Wheeler, T.R., Craufurd, P. Q., Ellis, R. H., Porter, J. R. & Prasad, P. V. (2000). Temperature variability and the yield of annual crops. Agriculture, Ecosystems & Environment, 82(1-3), 159-167. https://doi.org/10.1016/S0167-8809(00)00224-3
Yolcu, S., Alavilli, H., Ganesh, P., Panigrahy, M., & Song, K. (2021). Salt and Drought Stress Responses in Cultivated Beets (Beta vulgaris L.) and Wild Beet (Beta maritima L.). Plants, 10(9), 1843. https://doi.org/10.3390/plants10091843
Zandalinas, S. I., Balfagón, D., Arbona, V. & Gómez-Cadenas, A. (2017). Modulation of antioxidant defense system is associated with combined drought and heat stress tolerance in citrus. Frontiers in Plant Science, 8, 953. https://doi.org/10.3389/fpls.2017.00953
Zlatev, Z. (2009). Drought-induced changes in chlorophyll fluorescence of young wheat plants. Biotechnology & Biotechnological Equipment, 23(sup1), 438-441. https://doi.org/10.1080/13102818.2009.10818458
Zlatev, Z. S., & Yordanov, I. T. (2004). Effects of soil drought on photosynthesis and chlorophyll fluorescence in bean plants. Bulg. J. Plant Physiol, 30(3-4), 3-18.
Thomas, H., Ougham, H. J., Wagstaff, C. & Stead, A. D. (2003). Defining senescence and death. Journal of Experimental Botany, 54(385), 1127-1132.
Section
Research Articles

How to Cite

Effect of drought on gas exchange and chlorophyll fluorescence of groundnut genotypes. (2021). Journal of Applied and Natural Science, 13(4), 1478-1487. https://doi.org/10.31018/jans.v13i4.3145