##plugins.themes.bootstrap3.article.main##

Chadia Ouazzani

Abstract

Sunflower (Helianthus annus L) cultivation is affected by periods of severe drought that affect the growth and yield of sunflower crops. Wild sunflower species have brought many agronomically important traits to cultivated sunflower by quickly allowing them to undergo biotic and abiotic changes in their environment. Plants have developed several mechanisms that would enable them to tolerate high temperatures related to thermotolerance at the biochemical and metabolic levels. The present study aimed to highlight the variability of total and chloroplast proteins extracted from the wild and populations of sunflower leaves grown under different thermal stresses. The total proteins extracted from controlled and thermic stress leaves, characterized by SDS page were similar except polypeptides of molecular weight (MW) 42 kDa, 35 kDa, 31 kDa and 13.5 kDa which showed variability of sunflower varieties studied. Under thermic stress, the MW of chloroplast proteins was similar in the H petiolaris fallax and H praecox runyonni varieties. The protein markers of wild sunflower species revealed in response to thermal stresses contribute to the improvement of sunflowers in the face of environmental challenges.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Proteins, Chloroplasts, Helianthus spp, Leaves, Sunflower, Thermic stress

References
Bernfur, K., Rutsdottir, G. & Emanuelsson, C. (2017). The chloroplast -localized small heat shock protein Hsp21 associates with the thylakoid membranes in heat-stressed plants. Protein Sci, 26 (9), 1773-1784. doi: 10.1002/pro.3213.
Bowsher, A.W., Donovan, L. A. & Milton, E. F. (2016). Comparison of desert-adapted Helianthus niveus (Benth.) Brandegee ssp. tephrodes (A. Gray) Heiser to cultivated H. annuus L. for putative drought avoidance traits at two ontogenetic stages. Helia, 39 (64), 1-19 doi:10.1515/helia-2016-0003.
Dogra, V. & Kim, C. (2019). Chloroplast protein homeostasis is coupled with retrograde signaling. Plant Signal. Behav. 14 (11) doi: 10.1080/15592324.2019.1656037.
Fini, A., Brunetti, C., Loreto, F., Centritto, M., Ferrini, F. & Tattini, M. (2017). Isoprene responses and functions in plants challenged by environmental pressures associated to climate change. Frontiers in Plant Sci, 8, 1281 doi:10.3389/fpls.2017.01281.
Hu, S., Ding. Y. & Zhu, C. (2020). Sensitivity and responses of chloroplasts to Heat Stress in Plants. Front Plant sciences 11, 375 doi: 10.3389/fpls.2020.00375.
Jacob, P., Hirt, H. & Bendahmane, A. (2017). The heat-shock protein/chaperone network and multiple stress resistance. Plant Biotechnology Journal, 15, (4) 405–414 doi: 10.1111/pbi.12659. 
Kaushal, N., Bhandari, K., Siddique, K. H. M. & Nayyar, H. (2016). Food crops face rising temperatures: An overview of responses, adaptative mechanisms, and approaches to improve heat tolerance. Cogent Food & Agriculture 2 (1), 1-42 https://doi.org/10.1080/23311932.2015.1134380.
Kaya, Y. (2017). The utilizing from genetic diversity of sunflower wild species for abiotic stress. International conference 135 years Agricultural Science in Sadovo and 40 years. Institute of Plant Genetic Resources- Sadovo At: Plovdiv, Bulgaria.
Laemelli, U. K. & Favre, M. (1973). Maturation of the head of bacteriophage T4: DNA packing events, J. Mol. Biol, 15, 80 (4), 575-99. doi: 10.1016/0022-2836(73)90198-8.
Magaji, G., Usman, M. Y., Rafii, M. R., Ismail, M. R., Malek, M. A., Abdul Latif, M. & Oladosu, Y. (2014). Heat shock proteins: functions and response against heat stress in plants. International Journal of Scientific & Technology Research, 3(11), 204-218.
Mamaeva, A., Taliansky, M., Filippova, A ., Love, A. J., Golub, N. & Fesenko, I. (2020). The role of chloroplast protein remodelling in stress responses and shaping of the plant peptidome. New Phytologist, 227(5), 1326–1334. https://doi.org/10.1111/nph.16620.
Najeeb, U.,Tan, D. K.Y., Sarwar, M. & Shafaquat, A. (2019). Adaptation of crops to mer climates: morphological and physiological mechanisms: Combating climate change by adaptation. Sustainable Solutions for Food Security, 27-50 doi: 10.1007/978-3-319-77878-5_2.
Park, C. J. &  Seo, Y. S. (2015). Heat shock proteins: A review of the molecular chaperones for plant immunity. The Plant pathol Journal, 31 (4), 323–333 doi: 10.5423/ppj.rw.08.2015.0150.
Qiu, F., Baack, E. J., Whitney, K., Bock, D. G., Tetreault, H. M., Rieseberg, L. H. & Ungerer, M. C., (2018). Phylogenetic trends and environmental correlates of nuclear genome size variation in Helianthus sunflowers. New Phytologist, 221 (3), 1609–1618 doi: 10.1111/nph.15465.
Rai Sable, A. & Agarwal, S. K. (2018). Plant heat shock protein families: essential machinery for development and defense. Journal of Biological Science and Medicine, 4 (1), 51-64.
Skoric, D. (2016). Sunflower breeding for resistance to abiotic and biotic stresses. In book: Abiotic and Biotic Stress in Plants-Recent Advances and Future Perspectives. doi:10.5772/62159.
Seiler, G. L., Qi, L. L & Marek, L. F. (2017). Utilization of sunflower crop wild relatives for cultivated sunflower improvement. Crop Science, 57 (3), 1083–1101 doi: 10.2135/cropsci2016.10.0856.
Slattery, R. A. & Ort, D. R. (2019). Carbon assimilation in crops at high temperatures. Plant, Cell & Environment, 42, Special issue, (40), 2750-2758 https://doi.org/10.1111/pce.13572.
Wang, Q.L., Chen, J. H., He, N.Y. & Guo, F. Q. (2018). Metabolic reprogramming in chloroplasts under heat stress in plants. Int J Mol Sci, 19 (3), 849 doi: 10.3390/ijms19030849.
Wijewardene, I., Shen, G. & Zhang, H. (2021). Enhancing crop yield by using Rubisco activase to improve photosynthesis under elevated temperatures. Stress Biology, 1, 2-20. https://doi.org/10.1007/s44154-021-00002-5.
Yamamoto, Y. (2016). Quality control of photosystem II: The mechanisms for avoidance and tolerance of light and heat stresses are closely linked to membrane fluidity of the thylakoids. Front Plant Sci, 7: 1136.
Zach, A. & Wataru, S. (2014). Plastid proteas. plastid Biology 359-389. Part of the advances in plant biology. Book series (AIPB,5) doi:10.3389/fpls.2016.01136.
Citation Format
How to Cite
Ouazzani, C. . (2022). Total and chloroplast proteins of the leaves of cultivated, population and wild sunflower varieties cultivated under thermic stress. Journal of Applied and Natural Science, 14(1), 68–72. https://doi.org/10.31018/jans.v14i1.3137
More Citation Formats:
Section
Research Articles