##plugins.themes.bootstrap3.article.main##

Priya Choudhary Shakeel Ahmad Khan Ambrina Sardar Khan Richa Dave Nagar

Abstract

Air pollution is one of the major problems in the Delhi NCR region due to industrial emissions, traffic congestion, population growth and rapid development. Air pollutants deteriorate the environment, human health, plants and crops. This study focuses on the physiological parameters and yield attributes of paddy and wheat crops in the vicinity of a gas-based national thermal power plant (NTPC) located in Faridabad. Ten sites were selected, including the control site within a 10 km aerial distance from the exhaust chimney stack of the power plant. Major air pollutants, such as NOx, SOx, O3, and PM10, were monitored using Central Pollution Control Board (CPCB) guidelines. The air quality index (AQI) was moderately polluted at the sampling site, while good air quality was observed at the control site. The results showed that the photosynthetic rates were reduced to 46% in paddies and 48% in wheat crops. In the vegetative growth stage of paddies and wheat crops, the stomatal conductance of paddies decreased to 0.11 mmol m-2s-1 compared to 0.19 mmol m-2s-1 at the control site. The transpiration rate ranged from 0.6 to 7.7 μmol/m2/s in paddies and 1.2 to 9.8 μmol/m2/s in wheat crops. The R2 value ranged from 0.702 to 0.985, which shows a strong impact of the air quality index on the physiological parameters of crops. The yield reduction due to air pollution in paddies was 11.6%, and in wheat crops, it was 14.8%. This study also provides an inventory of air pollutants in Faridabad region and their subsequent impacts on crops.

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Air, Paddy, Photosynthetic Rate, Wheat, Yield

References
Adrees, M., Ibrahim, M., Shah, A. M., Abbas, F., Saleem, F., Rizwan, M.Hina, S., Jabeen, F.& Ali, S. (2016). Gaseous pollutants from brick kiln industry decreased the growth, photosynthesis, and yield of wheat (Triticum aestivum L.). Environmental Monitoring and Assessment, 188(5), 267. https://doi.org/10.1007/s10661-016-5273-8
Anoob, P., Santhoshkumar, A. V. & Roby, P. C. (2017). Impact of particulate pollution on photosynthesis, transpiration and plant water potential of teak (Tectonagrandis L.). Current Science, 112(6), 1272-1276. https://www.jst or.org/stable/24912656
Avnery, S., Mauzerall, D. L., Liu, J. & Horowitz, L. W. (2011). Global crop yield reductions due to surface ozone exposure: 2. Year 2030 potential crop production losses and economic damage under two scenarios of O3 pollution. Atmospheric Environment, 45(13), 2297-2309. https://doi.org/10.1016/j.atmosenv.2011.01.002
Aziz, R. M., Zabawi, A. M., Azdawiyah, A. S. & Fazlyzan, A. (2019). Effects of haze on net photosynthetic rate, stomatal conductance and yield of Malaysian rice (Oryza sativa L.) varieties. Journal of Tropical Agriculture and Food Science, 47(1), 1-13.
Braun, S., Achermann, B., De Marco, A., Pleijel, H., Karlsson, P. E., Rihm, B. Schindler, C.& Paoletti, E. (2017). Epidemiological analysis of ozone and nitrogen impacts on vegetation–critical evaluation and recommendations. Science of the Total Environment, 603, 785-792. https://doi.org/10.1016/j.scitotenv.2017.02.225.
Broberg, M. C., Feng, Z., Xin, Y. & Pleijel, H. (2015). Ozone effects on wheat grain quality–A summary. Environmental Pollution, 197, 203-213. https://doi.org/10.1016/j.envpol.2014.12.009
Burney, J. & Ramanathan, V. (2014). Recent climate and air pollution impacts on Indian agriculture. Proceedings of the National Academy of Sciences, 111(46), 16319-16324. https://doi.org/10.1073/pnas.1317275111
Central Pollution Ccontrol Board (2011). Guideline for the measurement of ambient air pollutants. Central Pollution Control Board [Retrieved from http://indiaenvironmentportal.org.in/files/NAAQSManualVolumeI-1.pdf
Gupta, R. & Seth, A. (2007). A review of resource conserving technologies for sustainable management of the rice–wheat cropping systems of the Indo-Gangetic plains (IGP). Crop protection, 26(3), 436-447.https://doi.org/10.1016/j.cropro.2006.04.030
Gupta, R., Somanathan, E. & Dey, S. (2017). Global warming and local air pollution have reduced wheat yields in India. Climatic Change, 140(3-4), 593-604. https://doi.org/10.1007/s10584-016-1878-8
Hora, V., Raman, V., Mishra, U., Garg, I., Noida, G. & Karimnagar, T. (2018). Study of real ambient air quality in delhi and impact of climate change on himalayan glaciers. International Journal of Pure and Applied Mathematics, 118(24), 1-13
Jacobs, M. & Hochheiser, S. (1958). Continuous sampling and ultramicro determination of nitrogen dioxide in air. Analytical Chemistry, 30(3), 426-428. https://doi.org/10.1021/ac60135a032
Kuddus, M., Kumari, R. & Ramteke, P. W. (2011). Studies on air pollution tolerance of selected plants in Allahabad city, India. Journal of Environmental Research and Management, 2(3), 042-046.
Malav, L. C., Khan, S. A., Kumar, S., Gupta, N. & Chaudhary, P. (2017). Effect of air pollutants on growth and yield of rice (Oryzasativa) and wheat (Triticumaestivum) crops around the coal based thermal power plant. International Journal of Current Microbiology and Applied Sciences, 6(10), 3151-3165. https://doi.org/10.20546/ijcmas.2017.610.370
Mills, G., Sharps, K., Simpson, D., Pleijel, H., Frei, M., Burkey, K.,Emberson, L., Uddling, J., Broberg, M., Feng, Z. & Agrawal, M. (2018). Closing the global ozone yield gap: Quantification and cobenefits for multistress tolerance. Global Change Biology, 24(10), 4869-4893. https://doi.org/10.1111/gcb.14381
Mina, U., Singh, R. & Chakrabarti, B. (2013). Agricultural production and air quality: an emerging challenge. International Journal of Environmental Science: Development and Monitoring, 4(2), 80-85.
Mina, U., Smiti, K. & Yadav, P. (2021). Thermotolerant wheat cultivar (Triticumaestivum L. var. WR544) response to ozone, EDU, and particulate matter interactive exposure. Environmental Monitoring and Assessment, 193(6), 1-16. https://doi.org/10.1007/s10661-021-09079-x
Mishra, L. C. (1982). Effect of environmental pollution on the morphology and leaf epidermis of Commelina bengalensis linn. Environmental Pollution Series A, Ecological and Biological, 28(4), 281-284. https://doi.org/10.10 16/0143-1471(82)90144-1
Nanos, G. D. & Ilias, I. F. (2007). Effects of inert dust on olive (Oleaeuropaea L.) leaf physiological parameters. Environmental Science and Pollution Research-International, 14(3), 212-214. https://doi.org/10.1065/espr2006.08.327
O’Shea, P. M., Roy, S. S. & Singh, R. B. (2016). Diurnal variations in the spatial patterns of air pollution across Delhi. Theoretical and applied climatology, 124(3-4), 609-620. 10.1007/s00704-015-1441-y
Ram, S. S., Majumder, S., Chaudhuri, P., Chanda, S., Santra, S. C., Maiti, P. K., Sudarshan, M. & Chakraborty, A. (2014). Plant canopies: biomonitor and trap for resuspended dust particulates contaminated with heavy metals. Mitigation and Adaptation Strategies for Global Change, 19(5), 499-508.https://doi.org/10.1007/s11027-012-9445-8
Ramya, A., Dhevagi, P., Priyatharshini, S., Chandrasekhar, C. N., Valliappan, K., Emberson, L., Uddling, J., Broberg, M., Feng, Z. & Venkataramani, S. (2021). Physiological and biochemical response of rice cultivars (Oryza sativa L.) to elevated ozone. Ozone: Science & Engineering, 43(4), 363-377.https://doi.org/10.1080/019 19512.20 20.1796585
Rao, M.N. & Rao, H.N.V. 1998. Air pollution. Tata McGraw Hill Publishing Company Limited, New Delhi
Ren, X., Shang, B., Feng, Z. & Calatayud, V. (2020). Yield and economic losses of winter wheat and rice due to ozone in the Yangtze River Delta during 2014–2019. Science of the Total Environment, 745, 140847. https://doi.org/10.1093/cjres/rsaa017
Phothi, R. & Theerakarunwong, C. D. (2017). Effect of chitosan on physiology, photosynthesis and biomass of rice ('Oryzasativa'L.) under elevated ozone. Australian Journal of Crop Science, 11(5), 624-630. https://search.informit.org/doi/10.3316/informit.9578449642589 65
Pleijel, H., Broberg, M. C., Uddling, J. & Mills, G. (2018). Current surface ozone concentrations significantly decrease wheat growth, yield and quality. Science of the Total Environment, 613, 687-692. https://doi.org/10.1016/j.scitotenv.2017.09.111
Shi, G., Yang, L., Wang, Y., Kobayashi, K., Zhu, J., Tang, H.Pan, S., Chen, T., Liu, G. & Wang, Y. (2009). Impact of elevated ozone concentration on yield of four Chinese rice cultivars under fully open-air field conditions. Agriculture, ecosystems & environment, 131(3-4), 178-184. https://doi.org/10.1016/j.agee.2009.01.009
Singh, A. A., Agrawal, S. B., Shahi, J. P. & Agrawal, M. (2014). Assessment of growth and yield losses in two Zea mays L. cultivars (quality protein maize and nonquality protein maize) under projected levels of ozone. Environmental Science and Pollution Research, 21(4), 2628-2641. 10.1007/s11356-013-2188-6
Singh, H., Sharma, R., Sinha, S., Kumar, M., Kumar, P., Verma, A., & Sharma, S. K. (2017). Physiological functioning of Lagerstroemia speciosa L. under heavy roadside traffic: an approach to screen potential species for abatement of urban air pollution. 3 Biotech, 7(1), 61. https://doi.org/10.1007/s13205-017-0690-0
Van Dingenen, R., Dentener, F. J., Raes, F., Krol, M. C., Emberson, L. & Cofala, J. (2009). The global impact of ozone on agricultural crop yields under current and future air quality legislation. Atmospheric Environment, 43(3), 604-618. https://doi.org/10.1016/j.atmosenv.2008.10.033
West, P. W. & Gaeke, G. C. (1956). Fixation of sulfur dioxide as disulfitomercurate (II) and subsequent colorimetric estimation. Analytical chemistry, 28(12), 1816-1819.https://doi.org/10.1021/ac60120a005
Zhang, X., Zhang, X., Zhang, L., Zhang, Y., Zhang, D., Gu, X.& Li, C. (2020). Metabolite profiling for model cultivars of wheat and rice under ozone pollution. Environmental and Experimental Botany, 179, 104214. https://doi.org/10.1016/j.envexpbot.2020.10 4214
Section
Research Articles

How to Cite

Effect of air pollutants on physiological parameters and yield attributes of paddy and wheat crops in Faridabad region, India. (2022). Journal of Applied and Natural Science, 14(1), 36-44. https://doi.org/10.31018/jans.v14i1.3108