Roushan Kumari Arun Kumar Singh Ranjit Kumar Arun Kumar


Diabetes is a metabolic disorder and global health issue. It arises because of an absolute or relative insulin deficiency that causes hyperglycemia. The study aimed to assess the antihyperglycemic, hepatoprotective, and renal protective effects of ethanolic fruit extract of Moringa oleifera, on alloxan-induced diabetic mice. Four mice were assigned to each group.  Alloxan was injected at the dose of 10mg/kg/body weight intraperitoneally to make the diabetic model in mice. Control and diabetic control mice received drinking water as a placebo, while the diabetic model mice group was administered with ethanolic extract of moringa fruit at the dose of 150mg/kg/bodyweight for 12 weeks. After that, animals were sacrificed, and their blood and tissue samples were collected for biochemical and histopathological examination. The glucose level markedly (p<0.0001) increased many folds in Group I (80.73± 1.24 to 221.5±13.4) and Group II (80.73 ± 1.24 from to 221.9±6.88). The level of insulin markedly (P< 0.0001) decreased in both groups (6.8±0.42 to1.378±0.19) and (6.8±0.42 to1.138±0.08) respectively. Serum hepatic and renal marker enzymes increased in the diabetic group of mice. Glucose level was meaningfully (p<0.0001) decreased in the M. oleifera administered group while serum insulin level significantly (p<0.0001) increased. The level of liver marker enzyme and renal marker also decreased as compared to the diabetic control group. Histopathological study revealed that alloxan treatment caused damage to the liver, kidney, and pancreatic tissues while the M. oleifera administered group exhibited significant improvement in the architecture of the liver, kidney, and pancreas. Hence, M. oleifera has great potential to rejuvenate the damaged tissue and consequently can restore all the serum enzymatic and hormonal parameters.


Download data is not yet available.


Metrics Loading ...




Diabetes, Insulin assay, Kidney, Liver, Moringa fruit extract, Pancreas

Agarwal, V., Sharma, A.K., Upadhyay, A., Singh, G. & Gupta, R. (2012). Hypoglycemic effects of Citrullus colocynthis roots. Acta Pol. Pharm. - Drug Res. 69, 75–79.
Abd El Latif, A., El Bialy, B. E. S., Mahboub, H. D. & Abd Eldaim, M. A. (2014). Moringa oleifera leaf extract ameliorates alloxan-induced diabetes in rats by regeneration of β cells and reduction of pyruvate carboxylase expression. Biochemistry and cell biology, 92(5), 413-419.
Al-Malki, A.L. & El Rabey, H.A. (2015). The antidiabetic effect of low doses of moringa oleifera lam. Seeds on streptozotocin induced diabetes and diabetic nephropathy in male rats. Biomed Res. Int. 2015, 1–13. https://doi.org/10.1155/2015/381040
Alhakmani, F., Kumar, S. & Khan, S.A. (2013). Estimation of total phenolic content, in-vitro antioxidant and anti-inflammatory activity of flowers of Moringa oleifera. Asian Pac. J. Trop. Biomed. 3, 623–627. https://doi.org/10.1016/S2221-1691(13)60126-4
Alrasheedi, A.A. & Hijazi, M. A. (2020). Anti-hyperglycemic effect of Salvadora persica leaf extracts in Alloxanized rats. International Journal of Food Sciences and Nutrition, 5, 38-456.
Aly, O., Abouelfadl, D. M., Shaker, O. G., Hegazy, G. A., Fayez, A. M. & Zaki, H. H. (2020). Hepatoprotective effect of Moringa oleifera extract on TNF-α and TGF-β expression in acetaminophen-induced liver fibrosis in rats. Egyptian Journal of Medical Human Genetics, 21(1), 1-9.
Annadurai, T., Muralidharan, A.R., Joseph, T., Hsu, M.J., Thomas, P.A. & Geraldine, P. (2012). Antihyperglycemic and antioxidant effects of a flavanone, naringenin, in streptozotocin-nicotinamide-induced experimental diabetic rats. J. Physiol. Biochem. 68, 307–318. https://doi.org/10.1007/s13105-011-0142-y
Bamagous, G.A., Al Ghamdi, S.S., Ibrahim, I.A.A., Mahfoz, A.M., Afify, M.A., Alsugoor, M.H.M., Shammah, A.A., Arulselvan, P. & Rengarajan, T. (2018). Antidiabetic and antioxidant activity of ethyl acetate extract fraction of Moringa oleifera leaves in streptozotocin-induced diabetes rats via inhibition of inflammatory mediators. Asian Pac. J. Trop. Biomed. 8, 320–327. https://doi.org/10.4103/2221-1691.235327
Basyony, M.A., El-Desouki, Hegazy, N.I. & El-Aama, M.M. (2016). Evaluation of anti- hyperglycemic effect of Moringa oleifera leaves extract on some physiological parameters of diabetic rats induced apoptosis in the pancreas. Int. J. Sci. Eng. Res. 7, 1461–1482.
Belal, H., Yesmin, R., Mamun, A., Hasan, N., Islam, D., A, I., MN, T., Rezaul, M., -2, K., Khan, M.H., Hossain, M.I., Islam, A. & Rahman, M. (2017). Hepatoprotective and antidiabetic effects of nigella sativa seed extract in alloxan-induced diabetic mice: an experimental study with histopathological. World J Pharm. life Sci. 3, 31–38.
Bennett, R.N., Mellon, F.A., Foidl, N., Pratt, J.H., Dupont, M.S., Perkins, L. & Kroon, P.A. (2003). Profiling glucosinolates and phenolics in vegetative and reproductive tissues of the multi-purpose trees Moringa oleifera L. (Horseradish tree) and Moringa stenopetala L. J. Agric. Food Chem. 51, 3546–3553. https://doi.org/10.1021/jf0211480
Bonsnes, R.W & Taussky, H.H. (1945). On the colorimetric determination of creatinine by the jaffe reaction. J. Biol. Chem., 158, 581–591. https://doi.org/10.1016/s0021-9258(19)51334-5
Centres for Disease Control and Prevention (2017). National Diabetes Statistics Report (2020). Estimates of diabetes and its burden in the United States.
Deepthi, B., Sowjanya, K., Lidiya, B., Bhargavi, R. S. & Babu, P. S. (2017). A modern review of diabetes mellitus: an annihilatory metabolic disorder. J In Silico In Vitro Pharmacol, 3(1).
Doumas, B. T., Perry, B. W., Sasse, E. A. & Straumfjord Jr, J. V. (1973). Standardization in bilirubin assays: evaluation of selected methods and stability of bilirubin solutions. Clinical chemistry, 19(9), 984-993.
Đurašević, S., Jasnić, N., Prokić, M., Grigorov, I., Martinović, V., Đorđević, J. & Pavlović, S. (2019). The protective role of virgin coconut oil on the alloxan-induced oxidative stress in the liver, kidneys and heart of diabetic rats. Food & Function, 10(4), 2114-2124.
Elkotby, D., Hassan, A. K., Emad, R. & Bahgat, I. (2018). Histological changes in islets of Langerhans of pancreas in alloxan-induced diabetic rats following Egyptian honey bee venom treatments. International Journal of Pure and Applied Zoology, 6(1), 1-6.
Fahey, J.W., Zalcmann, A.T. & Talalay, P. (2001). The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry. https://doi.org/10.1016/S0031-9422(00)00316-2
Fawcett, J.K. & Scott, J.E. (1960). A rapid and precise method for the determination of urea. J. Clin. Pathol., 13, 156–159. https://doi.org/10.1136/jcp.13.2.156
Fossati, P., Prencipe, L. & Berti, G. (1980). Use of 3,5-dichloro-2-hydroxybenzenesulfonic acid/4-aminophenazone chromogenic system in direct enzymic assay of uric acid in serum and urine. Clin. Chem. 26, 227–231. https://doi.org/10.1093/clinchem/26.2.227
Francis, J.A., Jayaprakasam, B., Olson, L.K. & Nair, M.G. (2004). Insulin Secretagogues from Moringa oleifera with Cyclooxygenase Enzyme and Lipid Peroxidation Inhibitory Activities. Helv. Chim. Acta, 87, 317–326. https://doi.org/10.1002/hlca.200490029
Geleta, B. & Makonnen, E. (2015). Toxicological Evaluations of the Crude Extracts and Fractions of Moringa stenopetala Leaves in Liver and Kidney of Rats. J. Cytol. Histol., 07. https://doi.org/10.4172/2157-7099.1000383
Gupta, R., Mathur, M., Bajaj, V.K., Katariya, P., Yadav, S., Kamal, R. & Gupta, R.S. (2012). Evaluation of antidiabetic and antioxidant activity of Moringa oleifera in experimental diabetes. J. Diabetes 4, 164–171. https://doi.org/10.1111/j.1753-0407.2011.00173.x
Hemant, U., Pradip, S. & Tarannum, P. (2014). A study on the effects of Moringa oleifera lam. pod extract on alloxan induced diabetic rats. Pelagia Res. Libr. Asian J. Plant Sci. Res. 4, 36–41.
Hosseini, A., Shafiee-nick, R. & Ghorbani, A. (2015). Pancreatic beta cell protection / regeneration with phytotherapy 51, 1–16.
Jain, P.G., Patil, S.D., Haswani, N.G., Girase, M. V. & Surana, S.J. (2010). Atividade hipolipidemica de Moringa oleifera Lam., Moringaceae, na hiperlipidemia induzida por dieta rica em gordura em ratos albinos. Brazilian J. Pharmacogn. 20, 969–973. https://doi.org/10.1590/S0102-695X2010005000038
Jaiswal, D., Kumar Rai, P., Kumar, A., Mehta, S. & Watal, G. (2009). Effect of Moringa oleifera Lam. leaves aqueous extract therapy on hyperglycemic rats. J. Ethnopharmacol. 123, 392–396. https://doi.org/10.1016/j.jep.2009.03.036
Jendrassik & Grofs BM, (1938). Quantitative colorimetric determination of bilirubin in serum or plasma. Clin Chem 27.
Kamalrudin, A., Jasamai, M. & Noor, M.M. (2018). Ameliorative effect of Moringa oleifera fruit extract on reproductive parameters in diabetic-induced male rats. Pharmacogn. J. 10, S54–S58. https://doi.org/10.5530/pj.2018.6s.10
Kandasamy, N. & Ashok Kumar, N. (2013). Myricetin modulates streptozotocin-cadmium induced oxidative stress in long term experimental diabetic nephrotoxic rats. J. Funct. Foods 5, 1466–1477. https://doi.org/10.1016/j.jff.2013.06.004
Kar, A., Choudhary, B.K. & Bandyopadhyay, NG (2003). Comparative evaluation of hypoglycaemic activity of some Indian medicinal plants in alloxan diabetic rats. J. Ethnopharmacol. 84, 105–108. https://doi.org/10.1016/S0378-8741(02)00144-7
Karthikesan, K., Pari, L.& Menon, V.P. (2010). Combined treatment of tetrahydrocurcumin and chlorogenic acid exerts potential antihyperglycemic effect on streptozotocin-nicotinamide-induced diabetic rats. Gen. Physiol. Biophys. 29, 23–30. https://doi.org/10.4149/gpb_20 10_01_23
Krentz, A. J., Fujioka, K., & Hompesch, M. (2016). Evolution of pharmacological obesity treatments: focus on adverse side‐effect profiles. Diabetes, Obesity and Metabolism, 18(6), 558-570.
Lal, B.S. (2016). Diabetes: Causes, Symptoms and Treatments, in: Public Health Environment and Social Issue in India, pp. 55–67.
Lenzen, S. (2008). The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia 51, 216–226. https://doi.org/10.1007/s00125-007-0886-7
Luangpiom, A., Kourjampa, W. & Junaimaung, T. (2013). Anti-hyperglycemic Properties of Moringa oleifera Lam. Aqueous Leaf Extract in Normal and MildlyDiabetic Mice. Br. J. Pharmacol. Toxicol. 4, 106–109. https://doi.or g/10.19026/bjpt.4.5371
Lucchesi, A.N., Cassettari, L.L. & Spadella, C.T. (2015). Alloxan-induced diabetes causes morphological and ultrastructural changes in rat liver that resemble the natural history of chronic fatty liver disease in humans. J. Diabetes Res. 2015, 1–11. https://doi.org/10.1155/2015/494578
Halaby, M. S., Metwally, E. M., & Omar, A. A. (2013). Effect of Moringa oleifera on serum lipids and kidney function of hyperlipidemic rats. J. Appl. Sci. Res, 9, 5189-5198.
Manohar V.s, Jayasree, T., Kiran Kishore, K., Mohana Rupa, L., Dixit, R. & Chandrasekhar, N. (2010). Evaluation of hypoglycemic and antihyperglycemic effect of freshly prepared aqueous extract of Moringa oleifera leaves in normal and diabetic rabbits. J. Chem. Pharm. Res. 4, 249–253.
Mathenge, W., Foster, A., & Kuper, H. (2010). Urbanization, ethnicity and cardiovascular risk in a population in transition in Nakuru, Kenya: a population-based survey. BMC public health, 10(1), 1-12.
Mathers, C.D & Loncar, D. (2006). Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 3, 2011–2030. https://doi.org/10.1371/journal.pme d.0030442
Moyo, B., Oyedemi, S., Masika, P.J. & Muchenje, V. (2012). Polyphenolic content and antioxidant properties of Moringa oleifera leaf extracts and enzymatic activity of liver from goats supplemented with Moringa oleifera leaves/sunflower seed cake. Meat Sci. 91, 441–447. https://doi.org/10.1016/j.meatsci.2012.02.029
Muzumbukilwa, W. T., Kadima, M. G., Nlooto, M., & Owira, P. M. O. (2019). Mapping the evidence of hepatoprotective properties of Moringa oleifera from sub-Saharan African countries: a systematic review protocol. Systematic reviews, 8(1), 1-6.
Olayaki, L.A., Irekpita, J.E., Yakubu, M.T.& Ojo, O.O., (2015). Methanolic extract of Moringa oleifera leaves improves glucose tolerance, glycogen synthesis and lipid metabolism in alloxan-induced diabetic rats. J. Basic Clin. Physiol. Pharmacol. 26, 585–593. https://doi.org/10.1515/jbcpp-2014-0129
Omodanisi, E.I., Aboua, Y.G., Oguntibeju, O.O. & Lamuela-Raventós, R.M. (2017). Assessment of the anti-hyperglycaemic, anti-inflammatory and antioxidant activities of the methanol extract of moringa oleifera in diabetes-induced nephrotoxic male Wistar rats. Molecules 22, 439. https://doi.org/10.3390/molecules22040439
Rajanandh MG & Kavitha J (2010). Quantitative estimation of β-sitosterol, total phenolic and flavonoid compounds in the leaves of Moringa oleifera, International Journal of PharmTech Research.
Reitman, S & Frankel, S. (1957). A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am. J. Clin. Pathol. 28, 56–63. https://doi.org/10.1093/ajcp/28.1.56
Sanjeevaiah, A., Sushmitha, A. & Srikanth, T. (2019). Prevalence of Diabetes Mellitus and its risk factors. Int. Arch. Integr. Med. 6, 319–324.
Sreekutty, M.S & Mini, S. (2016). Ensete superbum ameliorates renal dysfunction in experimental diabetes mellitus. Iran. J. Basic Med. Sci. 19, 111–118. https://doi.org/10.22038/ijbms.2016.6422
Sreelatha, S., Jeyachitra, A., & Padma, P. R. (2011). Antiproliferation and induction of apoptosis by Moringa oleifera leaf extract on human cancer cells. Food and Chemical Toxicology, 49(6), 1270-1275.
Tang, Y., Choi, E.-J., Han, W.C., Oh, M., Kim, J., Hwang, J.-Y., Park, P.-J., Moon, S.-H., Kim, Y.S. & Kim, E.-K. (2017). Moringa oleifera from Cambodia Ameliorates Oxidative Stress, Hyperglycemia, and Kidney Dysfunction in Type 2 Diabetic Mice. J. Med. Food 20, 502–510. https://doi.org/10.1089/jmf.2016.3792
Tende, J.A., Ezekiel, I., Dikko, A.A.U. & Goji, ADT (2011). Effect of Ethanolic Leaves Extract of Moringa oleifera on Blood Glucose Levels of Streptozocin-Induced Diabetics and Normoglycemic Wistar Rats. Br. J. Pharmacol. Toxicol. 2, 1–4.
Toppo, R., Roy, B.K., Gora, R.H., Baxla, S.L. & Kumar, P. (2015). Hepatoprotective activity of Moringa oleifera against cadmium toxicity: In rats. Vet. World, 8, 537–540. https://doi.org/10.14202/vetworld.2015.537-540
Trinder, P. (1969). Determination of blood glucose using an oxidase-peroxidase system with a non-carcinogenic chromogen. J. Clin. Pathol. 22, 158–161.https://doi.org/10.1136/jcp.22.2.158
Vergara-Jimenez, M., Almatrafi, M.M. & Fernandez, M.L. (2017). Bioactive components in Moringa oleifera leaves protect against chronic disease. Antioxidants 6, 1–13. https://doi.org/10.3390/antiox6040091.
Villarruel-López, A., López-de la Mora, D. A., Vázquez-Paulino, O. D., Puebla-Mora, A. G., Torres-Vitela, M. R., Guerrero-Quiroz, L. A. & Nuño, K. (2018). Effect of Moringa oleifera consumption on diabetic rats. BMC Complementary and Alternative medicine, 18(1), 1-10.
Citation Format
How to Cite
Kumari, R., Singh, A. K. ., Kumar, R., & Kumar, A. (2021). Phytoremedial effect of fruit extract of Moringa oleifera on alloxan induced diabetic model in Swiss albino mice : Phytoremedial effect of fruit extract of Moringa oleifera on Alloxan induced Diabetes. Journal of Applied and Natural Science, 13(4), 1420–1429. https://doi.org/10.31018/jans.v13i4.3073
More Citation Formats:
Research Articles