##plugins.themes.bootstrap3.article.main##

Latha Rathinam S. P. Sevarkodiyone J. Pandiarajan

Abstract

Emerging nanobiotechnology has provided innovative techniques to synthesize nanoparticles through biological methods to explore the potentialities of biological sources like phytoextracts, microbes, animal secretions and excretion. This research studies the potential of vermiwash to synthesize the silver and gold nanoparticles and evaluate its in vitro effect of antimicrobial   and antidiabetic activities. The characterization of the nanoparticles was analyzed through various techniques. Ultraviolet (UV)-Visible spectroscopy showed the maximum absorption spectrum at 413 nm for silver and 541 nm for gold nanoparticles. Fourier transform infrared spectroscopy (FTIR) revealed the reducing agent involved in nanoparticles synthesis. Scanning electron microscope (SEM) images revealed the size of the silver and gold nanoparticles as 24 nm and 50 nm, respectively. Energy dispersive X-ray (EDAX) analysis revealed the elemental composition of the synthesized nanoparticles. X-ray diffraction (XRD) analysis confirmed the crystalline nature of the nanoparticles that displayed the preferential orientation of the crystals toward the (111) plane.  Antimicrobial activity was assessed using the resazurin assay method.  A minimum inhibitory concentration (MIC) of less than 7.8 µg was observed in Staphylococcus aureus and Klebsiella pneumoniae. In the antifungal activity, MIC at 250 µg was noted in Mucor sp. and Candida albicans. Antidiabetic activity was assessed by α-amylase and α-glucosidase inhibitory assay. IC50 of α-amylase and α-glucosidase activity of the silver nanoparticles was noted as 218 and 221 µg/mL, respectively. IC 50 value for the enzymatic assay dose-dependently confirmed the effect. Conclusively biosynthesized nanoparticles from vermiwash showed potential efficiency of antibacterial, antifungal and antidiabetic activities.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Antimicrobial, Antidiabetic, Minimum inhibitory concentration, Nanobiotechnology, Nanoparticles

References
Vadamalaikrishnan, K. & Fathima (2021). M. Effect of vermiwash and plant growth regulators on growth and stem anatomy of Hibiscus cannabinus L.International Journal of Pharmaceutical Sciences and Research, 12(2), 1190-95. doi: 10.13040/IJPSR.0975-8232.12(2).1190-9
Das, S.K., Avasthe, R.K. & Gopi, R.(2014). Vermiwash: use in organic agriculture for improved crop production. Popular Kheti, 2 (4),  45-46 www. popularkheti. info
MacHfudz, M.,  Basit, A. &  Handoko, R.N.S. (2020).Effectiveness of vermicompost with additives of various botanical pesticides in controlling Plutellax ylostella and their effects on the yield of cabbage (Brassica oleracea L. var. Capitata). Asian Journal of Agricu lture and Biology, 8 (3),  223-232.
Kanchan, M.,  Keshav, S. & Tripathi, C.P.M.(2013).Management of pod borer (Helicoverpa armigera) infestation and productivity enhancement of gram crop (Cicer aritenium) through vermiwash with biopesticides.World Journal of Agricultural Sciences , 9(5), 401-408 . DOI: 10.5829 /idosi.wjas.2013.9.5.1749.
Sudeshna Thaku & Sood, A.K.(2019). Lethal and inhibitory activities of natural products and biopesticide formulations against  Tetranychusurticae Koch (Acarina: Tetranychidae). International Journal of Acarology, 45 (6-7), 381-390, DOI: 10.1080/01647954.2019.1666920.
Agarwal, H., Venkat Kumar. S. & Rajesh Kumar, S. (2018). Antidiabetic effect of silver nanoparticles synthesized using lemongrass (Cymbopogon citratus) through conventional heating and microwave irradiation approach. Journal of Microbiology, Biotechnology and Food Sciences,7(4), 371-376.
Akinnuoye-Adelabu, D. B., Hatting, J, C., De Villiers, Terefe, T. & Bredenhand E. (2019). Effect of redworm extracts against fusarium root rot during wheat seedling. Agronomy Journal, 111 (5), 2610-2618. https:// doi.org/ 10.2134/ agronj2018 .11.0743.
Govindarajan, B. & Prabakaran, V. (2012). Antibacterial activity of vermiwash of Eisenia fetida (Earthworm). International Journal of Biological Technology, 3(3), 15-16.
Rai, M. & Ingle, A. (2021).Role of nanotechnology in agriculture with special reference to management of insect pests. Applied Microbiology and Biotechnology, 94(2), 287–293. https://doi.org/10.1007/s00253-012-3969-4.
Duran, N., Durán, M., de Jesus, M.B., Seabra, A. B., Favaro, W. J. & Nakazato, G.(2016) Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity. Nanomedicine,12(3), 789-799. doi: 10.1016/j.nano.201 5.11.016.
Jain, Devendra, Daima, Hemant, Kachhwala, S. & Kothari, Shanker. (2009). Synthesis of Plant-Mediated Silver Nanoparticles using Papaya Fruit Extract and Evaluation of their Anti Microbial Activities. Digest Journal of Nanomaterials and Biostructures, 4, 557-563.
Aljabali, A.A.A., Akkam, Y.A.l.,Zoubi, M.S., Al-Batayneh, K.M., Al-Trad. B., Abo Alrob, O., Alkilany, A.M., Benamara, M. & Evans,D.J.(2018). Synthesis of gold nanoparticles using leaf extract of Ziziphus zizyphus and their antimicrobial activity. Nanomaterials (Basel), 8(3), 174. doi: 10.3390/nano8030174.
Sarker, S.D., Nahar, L. & Kumarasam, Y.(2007). Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods, 42(4), 321-4. DOI: 10.1016/j.ymeth.2007.01.006.
Gulnaza, A. & Savitha, G. (2013) .Evaluation of antimicrobial activity of leaf and stem extracts of sidda medicinal plant Sidacordata. International Journal of Medicine and Pharmaceutical Sciences (IJMPS), 3(3), 39-50.
Bhutkar, M. A. & Bhise, S. B. (2012). In vitro assay of alpha amylase inhibitory activity of some indigenous plants. International Journal of Chemical sciences,10(1), 457–462. DOI: 10.31031/MAPP.2018.01.000518.
Kim, Y.M., Jeong, Y.K., Wang, M.H., Lee, W.Y. & Rhee, H.I. (2005). Inhibitory effect of pine extract on alpha-glucosidase activity and postprandial hyperglycemia. Nutrition, 21(6), 756-61. doi: 10.1016/j.nut.2004.10.014. PMI D: 15925302.
Lekshmi, Packia., Sahila, R., Bharath, S.& Dinesh Kumar, P.A. (2014). Synthesis of nanofibreans silver nanoparticles from coelomic fluid of earthworm eudriluseuginae and Pontoscolexcorethrurus and its antimicrobial potency. Asian Journal of Pharmaceutical and Clinical Research, 7(1), 177-182.
Dwivedi, Amarendra Dhar & Gopal, Krishna.(2010). Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract,Colloids and Surfaces A: Physicochemical and Engineering Aspects, 369(1–3), 27-33 https://doi.org/10.1016/j.colsurfa.2010.07.020.
Guo, M., Li, W., Yang, F. & Liu, H. (2015). Controllable biosynthesis of gold nanoparticles from a Eucommia ulmoides bark aqueous extract. Spectrochimica acta. Part A, Molecular and Biomolecular Spectroscopy,142, 73-79. DOI: 10.1016/ j.saa.2015.01.109.
Gopinath, V., MubarakAli, D., Priyadarshini, S., Priyadharsshini, N.M., Thajuddin, N. & Velusamy, P. (2012).Biosynthesis of silver nanoparticles from Tribulus terrestris and its antimicrobial activity. A novel biological approach. Colloids and Surfaces B: Biointerfaces,96, 69-74. DOI: 10.1016/j.colsurfb.2012.03.023.
Bhau, B.S., Sneha Ghosh., Sangeeta Puri., Borah, B.,Sarmah, D.K. & Raju Khan. (2015).Green synthesis Of gold nanoparticles from the leaf extract of nepenthes khasiana and antimicrobial assay. Advanced Materials Letters, 6(6), 55-58.
Basavegowda, Nagaraj & Sobczak-Kupiec, Agnieszka & Fenn, Rebecca & Dinakar, Salman. (2013). Bioreduction of chloroaurate ions using fruit extract Punica granatum (Pomegranate) for synthesis of highly stable gold nanoparticles and assessment of its antibacterial activity. Micro & Nano Letters, IET. 8,: 400-404. 10.1049/mnl.2013.0137.
Paulkumar, K., Gnanajobitha, G., Vanaja, M., Rajeshkumar, S., Malarkodi, C., Pandian, K. & Annadurai, G.(2014). Piper nigrum leaf and stem assisted green synthesis of silver nanoparticles and evaluation of its antibacterial activity against agricultural plant pathogens. The
Scientific World Journal., (7), 829-894 https://doi.org/10.1155/201 4/829894.
Garibo, D., Borbón-Nuñez, H.A., de León, J.N.D. et al. (2020).Green synthesis of silver nanoparticles using Lysilomaacapulcensis exhibit high-antimicrobial activity. Sci Rep,  10(1),12805 , https://doi.org/10.1038/s41598-020-69606-7.
Thanh-Truc Vo., Thi Thanh-Ngan Nguyen., Thi Thanh-Tam Huynh., Thi Thuy-Trang Vo., Thi Thuy-Nhung Nguyen., Dinh-Truong Nguyen., Van-Su Dang., Chi-Hien Dan & Thanh-Danh Nguyen.(2019). Biosynthesis of silver and gold nanoparticles using aqueous extract from Crinum latifolium leaf and tTheir applications forward antibacterial effect and wastewater treatment. Journal of Nanomaterials, (4):1-14 https://doi.org/10.1155/2019/8385935.
Badeggi, U.M., Badmus, J.A., Botha, S.S., Ismail, E., Marnewick, J.L., Africa, C.W.J. & Hussein,A.A.(2020) Biosynthesis, Characterization, and biological activities of procyanidin capped silver nanoparticles. Journal of Functional Biomaterials, 11(3), 66. https://doi.org/10.3390/jfb11030066.
Singh, R., Sahu, S. &Thangaraj,M.(2014). Biosynthesis of Silver Nanoparticles by Marine Invertebrate (Polychaete) and Assessment of Its Efficacy against Human Pathogens. Journal of Nanoparticles, (2), 1-7. http: // dx. doi. org/ 10.1155/2014/ 718240.
Chidambaram Jayaseelan., Rajendiran Ramkumar., Abdul AbdulRahuman, & Pachiappan Perumal. (2013). Green synthesis of gol nanoparticles using seed aqueous extract of Abelmoschus esculentus and its antifungal activity. Industrial Crops and Products, 45, 423–429. Doi:10.10 16/j.indcrop.2012.12.019.
Nadana, G. Raja Vadivu., Rajesh, C., Kavitha, A., Sivakumar, P., Sridevi, G., &Palanichelvam, K. (2020). Induction of growth and defense mechanism in rice plants towards fungal pathogen by eco-friendly coelomic fluid of earthworm. Environmental Technology & Innovation, 19, 101011.doi: 10.1016/j.eti.2020.101011 .
Thatoi,P., Kerry, R.G., Gouda, S., Das, G., Pramanik, K., Thatoi, H. & Patra, J.K. (2016). Photo-mediated green synthesis of silver and zinc oxide nanoparticles using aqueous extracts of two mangrove plant species, Heritiera fomes and Sonneratia apetala and investigation of their biomedical applications .Journal of Photochemistry and Photobiology B: Biology,163,311-8. doi: 10.1016/j.jphoto biol.2016.07.029.
 Vishnu Kiran, M.& Murugesan.S.(2013). Biogenic silver nanoparticles by Halymeniaporyphyroides and its in vitro anti-diabetic efficacy. J. Chem. Pharm. Res, 5(12),10018.
Manam, D.V.K.& Murugesan, S .(2014).Biological synthesis of silver nanoparticles from marine alga Colpomeniasinuosa and its in vitro anti-diabetic activity.American Journal of Bio-pharmacology Biochemistry and Life Sciences (AJBBL), 3(1),  1-7.
Debnath, G., Das, P.&Saha, A.K.(2020). Characterization, Antimicrobial and α-Amylase Inhibitory Activity of Silver Nanoparticles Synthesized by using Mushroom Extract of Lentinus tuber-regium.Proceedings of the National Academy of sciences. Sect. B Biological Sciences, 90(1), 37–45. https://doi.org/10.1007/s40011-019-010 76.
Citation Format
How to Cite
Rathinam, L. . ., Sevarkodiyone, S. P. ., & Pandiarajan, J. . (2021). Efficacy of silver and gold nanoparticles obtained from vermiwash: In vitro study on antimicrobial and antidiabetic activities . Journal of Applied and Natural Science, 13(4), 1317–1325. https://doi.org/10.31018/jans.v13i4.3036
More Citation Formats:
Section
Research Articles