Article Main

Devaj Gupta Roopa Rani Samal Drashya Gautam Sunita Hooda Sarita Kumar

Abstract

Aedes aegypti management is a global concern due to the absence of medication and effective vaccines. The pesticide-mediated health hazards and rising insecticide resistance in mosquitoes have aggravated the issues. As graphene Oxide (GO)- based nanoformulations are considered a novel mosquito management strategy; the present investigation evaluated the efficacy of GO-based nanoformulations conjugated with malathion (ML) and endosulphan (EN) against Ae. aegypti. The GO was synthesised by Hummers’ method and was confirmed by UV-visible spectral analysis. The GO-ML and GO-EN binary mixtures (1:1 and 1:2) were assayed for toxic potential against mosquito larvae as per WHO protocol and the dead larvae were scrutinized for morphological deformations/abnormalities. The contact irritancy potential of GO nanoformulations was also evaluated against adult Ae. aegypti. The UV-visible spectrum of GO showed a narrow and high peak at ~300 nm corresponding to an n-π* plasmon peak. The GO-insecticide binary mixtures augmented the ML and EN toxicity by 80.43% and 6.43-fold, respectively. The GO-ML mixture-exposed larvae revealed cuticular deposition of black soot while larvae exposed to GO-EN exhibited disintegrated gut viscera. GO-insecticide combinations increased flights in Ae. aegypti denoting irritant potential. The effectual toxic, abrasive and irritant activity of GO-insecticide nanoformulations recommends developing graphene-based toxicants for mosquito management

Article Details

Article Details

Keywords

Aedes aegypti, Contact irritancy, Graphene oxide, Insecticide, Larvicidal, Nanoformulation

References
Abbott W.S. (1925). A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18, 265-267.
Chaudhari, A.K., Singh, V.K., Kedia, A., Das, S. & Dubey, N.K. (2021). Essential oils & their bioactive compounds as eco-friendly novel green pesticides for management of storage insect pests: prospects & retrospects. Environ. Sci. Pollut. Res. 28, 18918-18940. https://doi.org/10.1007/s11356-021-12841-w
Chen, J., Yao, B., Li, C. & Shi, G. (2013). An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon. 64, 225-229. https://doi.org/10.1016/j.carbon.2013.07.055
Das, K., Jhan, P.K., Das, S.C., Aminuzzaman, F.M. & Ayim, B.Y. (2021). Nanotechnology: Past, Present & Future Prospects in Crop Protection. IntechOpen, DOI: 10.5772/intechopen.98703. Available from: https://www.intechopen.com/online-first/77333
Dixit, S., Ahsan, H & Khan, F.H. (2021). Pesticides & plasma proteins: unexplored dimensions in neurotoxicity. Internat. J. Pest Manage. 2021,1-10. https://doi.or g/10.1080/09670874.2021.1917725
Gautam, D., Lal, S & Hooda, S. (2020). Adsorption of rhodamine 6g dye on binary system of nanoarchitectonics composite magnetic graphene oxide material. J. Nanosci. Nanotechnol. 20, 2939-2945. https://doi.org/10.1166/jnn.2020.17442
Gupta, A., Samal, R.R & Kumar, S. (2021). Physiological & reproductive fitness cost in Aedes aegypti on exposure to toxic xenobiotics in New Delhi, India. J. Appl. Nat. Sci. 13, 71-78. https://doi.org/10.31018/jan s.v13i1.2470
Jampílek J., Kráľová K. & Fedor P. (2020). Bioactivity of nanoformulated synthetic and natural insecticides and their impact on environment. In: Fraceto L.F., S.S. de Castro V.L., Grillo R., Ávila D., Caixeta Oliveira H., Lima R. (eds) Nanopesticides. Springer, Cham, pp 165-225. https://doi.org/10.1007/978-3-030-44873-8_7
Kalyanasundaram, M & Das, P.K. (1985). Larvicidal & synergistic activity of plant extracts for mosquito control. Ind. J. Med. Res. 82, 19-23.
Kumar, S., Bhanjana, G., Sharma, A., Sidhu, M.C & Dilbaghi, N. (2014). Synthesis, characterization & on field evaluation of pesticide loaded sodium alginate nanoparticles. Carbohydr. Polym. 101,1061-1067. https://doi.org/1 0.1016/j.carbpol.2013.10.025
Lu, Z., Zhang, C.,Gao, Y., Wang, W., Lin, J & Du, F. (2021). Simple, effective, & energy-efficient strategy to construct a stable pesticide nanodispersion. ACS Agric. Sci. Technol. 1, 329-337. https://doi.org/10.1021/acsa gscitech.1c00018
Monteiro, R.A., Camara, M.C., de Oliveira, J.L., Campos, E.V.R., Carvalho, L.B., de Freitas Proença, P.L., Guilger-Casagre, M., Lima, R., do Nascimento, J., Gonçalves, K.C. & Polanczyk, R.A. (2021). Zein based-nanoparticles loaded botanical pesticides in pest control: An enzyme stimuli-responsive approach aiming sustainable agriculture. J. Hazard. Mater. 417, p.126004. https://doi.org/10.1 016/j.jhazmat.2021.126004
Nehra, M., Dilbaghi, N., Marrazza, G., Kaushik, A., Sonne, C., Kim, K.H. & Kumar, S. (2021). Emerging nanobiotechnology in agriculture for the management of pesticide residues. J. Hazard. Mater. 401, p.123369. https://doi.org/10.1016 /j.jhazmat.2020.123369
Raj, S.N., Anooj, E.S., Rajendran, K. & Vallinayagam, S. (2021). A comprehensive review on regulatory invention of nano pesticides in Agricultural nano formulation & food system. J. Mol. Struct. 1239, 1-9. https://doi.org/10.1016/j.molstruc.2021.130517
Rani, P.U., Madhusudhanamurthy, J & Sreedhar, B. (2014). Dynamic adsorption of pinene & linalool on silica nanoparticles for enhanced antifeedant activity against agricultural pests. J. Pest Sci. 87, 191–200. https://doi.org/10.1007/s10340-013-0538-2
Samadi, S & Abbaszadeh, M. (2017). Synthesis & characterization of MgO/PEG/GO nanocomposite & its application for removal of copper (II) from aquatic media. Bull. Soc. R. Sci. Liège. 86, 271-280. 10.25518/0037-9565.6709
Samal R.R & Kumar, S. (2021). Cuticular thickening associated with insecticide resistance in dengue vector, Aedes aegypti L. Internat. J. Trop. Insect Sci. 41, 809–820. https://doi.org/10.1007/s42690-020-00271-z
Samal R.R. & Kumar S. (2018). Susceptibility status of Aedes aegypti L. against different classes of insecticides in New Delhi, India to formulate mosquito control strategy in fields. The Open Parasitol. J. 6, 52-62. 10.2174/1874421401806010052
Samal, R.R., Panmei, K., Lanbiliu, P & Kumar, S. (2020). Biochemical characterization of acetamiprid resistance in laboratory-bred population of Aedes aegypti L. larvae. Proceedings of the International Conference & the 10th Congress of the Entomological Society of Indonesia (ICCESI 2019), Bali, Indonesia. 8, 169-176. https://doi.org/10.2991/absr.k.200513.030
Song, M.R., Cui, S.M., Gao, F., Liu, Y.R., Fan, C.L., Lei, T.Q & Liu, D.C. (2012). Dispersible silica nanoparticles as carrier for enhanced bioactivity of chlorfenapyr. J. Pestic. Sci. 37, 258–260,  https://doi.org/10.1584/jpestics.D12-027
Trisyono, A & Whalon, M. E (1999). Toxicity of neem applied alone & in combination with Bacillus thuringiensis to Colorado potato beetle (Coleoptera: Chrysomelidae). Journal of Economic Entomology, 92: 1281–1228. https://doi.org/10.1093/jee/92.6.1281
Wang, X., Xie, H., Wang, Z & He, K. (2019a). Graphene oxide as a pesticide delivery vector for enhancing acaricidal activity against spider mites. Colloids Surf. B: Biointerface. 173, 632-638. https://doi.org/10.1016/j.colsurfb.2 018.10.010
Wang, X., Xie, H., Wang, Z., He, K & Jing, D. (2019b). Graphene oxide as a multifunctional synergist of insecticides against lepidopteran insect. Environ. Sci.: Nano. 6,75-84. 10.1039/C8EN00902C 
World Health Organization (2016). Monitoring & managing insecticide resistance in Aedes mosquito populations. http://apps.who.int/iris/bitstream/handle/10665/204588/WHO_ZIKV_VC_16.1_eng.pdf?sequence=2
Xiao, Z., Zhang, Y., Niu, Y., Ke, Q. & Kou, X. (2021). Cyclodextrins as carriers for volatile aroma compounds: A review. Carbohydr. Polym. p.118292. https://doi.org/10.10 16/j.carbpol.2021.118292
Yang, F.L., Li, X.G., Zhu, F & Lei, C.L. (2009). Structural characterization of nanoparticles loaded with garlic essential oil & their insecticidal activity against Tribolium castaneum (Herbst)(Coleoptera: Tenebrionidae). J. Agric. Food Chem. 57, 10156–10162. https://doi.org/10.1021/jf902 31 18
Zhang, P., Guo, Z., Ullah, S., Melagraki, G., Afantitis, A. & Lynch, I. (2021). Nanotechnology & artificial intelligence to enable sustainable & precision agriculture. Nature Plants, 7, 864-876. https://doi.org/10.1038/s41477-021-00 946-6
Section
Research Articles

How to Cite

Multifunctional activity of graphene oxide-based nanoformulation against the disease vector, Aedes aegypti. (2021). Journal of Applied and Natural Science, 13(4), 1265-1273. https://doi.org/10.31018/jans.v13i4.3018